
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany

30 0 North Z e e b Road. Ann Arbor, Ml 48 106 -134 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Order N um ber 9316545

Software as capital: Lessons for economic development from
software engineering

Baetjer, Howard, Jr., Ph.D.

George Mason University, 1993

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SOFTWARE AS CAPITAL:
LESSONS FOR ECONOMIC DEVELOPMENT

FROM SOFTWARE ENGINEERING

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

by

Howard Baetjer Jr.
B.A., Princeton University 1974

M.Litt., University of Edinburgh 1980
M.A., Boston College 1984

Director: Professor Don Lavoie
Program on Social and Organizational Learning

Spring 1993
George Mason University

Fairfax, Virginia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SOFTWARE AS CAPITAL:
LESSONS FOR ECONOMIC DEVELOPMENT

FROM SOFTWARE ENGINEERING

by

Howard Baetjer Jr.
A Dissertation

Submitted to the
Faculty of the Graduate School

of
George Mason University

in Partial Fulfillment of
the Requirements for the Degree

of
Doctor of Philosophy

Economics

Committee:

Date: \ j \ \ j V)

Director

Department Chairman

Dean of the Graduate School

Spring 1993
George Mason University
Fairfax, Virginia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ii

for

Johnnie, Markie, Asia, and Jessica,

who brightened the process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgments

I am profoundly grateful to the Center for the Study of Market Processes for five

years of financial, intellectual, and emotional support of my academic efforts, which

have made this paper possible. Thanks ever so much. I am grateful as well to the

Claude R. Lambe Foundation and the J.M. Foundation for financial support.

Kent Beck and Ward Cunningham each provided an extremely valuable interview:

many thanks to them both. Thanks to Tom Wrensch for helping me learn Smalltalk

and understand better the software development process. I am also indebted to

Paul Ambrose, Lee Griffin of IBM, Richard Collum of First Union National Bank of

North Carolina, and Bill Waldron of Krautkamer Branson for short, but valuable

conversations about the software development process. Thanks to Robert Polutchko

of Martin Marietta Corp. for a short conversation which provided useful insight into

the nature of software.

Thanks to Phil Salin, founder of the American Information Exchange Corp., and to

all my teammates at AMiX, both for the chance to share in bootstrapping an

electronic market for software components and for providing an electronic

marketplace in which I was able to purchase research assistance. I am grateful to

Dr. Brad Cox for his steady support of my work, well before he joined my

committee, and to Professors Karen Vaughn, Jack High, and David Rine for their

helpful comments and criticisms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Thanks to Mark Miller and Eric Drexler for opening my eyes to this general area of

research, and to Mark Miller in particular for extensive interviews, inspiration, and

support.

Thanks to the designers of Microsoft Word for Windows, for providing me with a

superb tool for dissertation-writing.

Thanks to Kevin Lacobie for research help and for numerous valuable discussions.

I am extremely grateful to Bill Tulloh for a host of valuable suggestions and insights

into this topic, for inestimable help with research, for criticism of earlier drafts, and

for his enthusiasm for the topic.

My primary debt of gratitude is to my chairman, Don Lavoie. For his steady support

and encouragement, for intellectual inspiration, for his great generosity in time,

attention, and timely response to every request for guidance, and in particular for

the example of his passion for understanding, I am extremely grateful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

Page

Abstract ..vii

Preface .. 1

Chapter 1. Knowledge Capital and the Theory of Economic Growth.......................4
1. The subject of this investigation: Better tools as a cause of the

wealth of nations...4
2. Irrelevance of mainstream "theory of economic growth".................6
3. Capital goods as knowledge...24
4. Capital goods and division of knowledge across time and space...40
5. Capital structure..45
6. Capital development as a social learning process........................... 51

Chapter 2. A Short History of Software Development.. 54
1. Introduction.. 54
2. Overview.. 56
3. The Key Challenge: Managing Complexity....................................58
4. The Evolution of Programming Practice...60
5. Object-Oriented Technologies...70
6. Summary.. 76

Chapter 3. Designing new capital: lessons from software development................. 78
1. Introduction.. 78
2. Discovery in the design process: why prototyping........................ 79
3. Designing as understanding: the role of tools for thought..............98
4. Summary...118

Chapter 4. Capital Evolvability: Lessons from Software Maintenance.................. 120
1. Introduction...120
2. Evolvability as a design goal... 124
3. Evolvability through modularity... 132
4. Design principles that yield modularity....................................... 138
5. Accelerating evolution through software reuse............................147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5. Evolving the Capital Structure: Markets for Software Components 155
1. Introduction..155
2. Component markets as an unintended consequence of improved

modularity.. 158
3. Learning through markets...160
4. Aspects of component market evolution....................................... 169
5. Summary..179

Chapter 6. Conclusions: Implications for Economic Development and for Growth

Theory..182
1. Introduction..182
2. Applicability to hard tools... 182
3. Implications for economic development: exponential growth?.... 189
4. Implications for growth theory.. 193

Bibliography.. 200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

SOFTWARE AS CAPITAL: LESSONS FOR ECONOMIC DEVELOPMENT FROM

SOFTWARE ENGINEERING

Howard Baetjer Jr., Ph.D.

George Mason University, 1993

Dissertation Director: Professor Don Lavoie

This dissertation investigates the nature of economic development: how do human

societies advance in economic well-being? More narrowly, it investigates the role

of capital goods in this advance: what is the nature of the processes by which

people improve the capital structure? The dissertation addresses these questions

through examining software development - its practices, tools, and technologies,

and their evolution. Software development illuminates the nature of capital

development in general.

The theoretical foundation of the work is Austrian capital theory. Neoclassical

growth theory, including the "new growth theory" of Paul M. Romer, is found to be

of little of use here, because it abstracts away from what Ludwig Lachmann calls the

structural aspects of capital: its heterogeneity and complementarity. Following Carl

Menger, this study attributes human advancement primarily to the advancement of

human knowledge. Capital goods embody the knowledge of many. Because this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

knowledge is dispersed, often tacit, and incomplete, the capital structure evolves

through a social learning process.

Requirements for software applications can rarely be established before

development begins. Hence software developers have evolved procedures such as

rapid prototyping for learning what the software must do. Prototyping is an

iterative, interactive, dialogue-like learning process. Tools, languages, and

methodologies are evolving which primarily enable understanding of the complex

systems being developed. Object-oriented programming systems especially

improve learning by providing rapid feedback and by allowing developers to

program with high-level abstractions suitable for thinking about the problems being

addressed.

Because conditions change, software must constantly evolve to maintain its value.

Experience with software maintenance suggests that evolvability of software systems

is fostered by modularity, which improved understandability, localized changes,

and reduces system complexity. Modular, object-oriented techniques also enable

construction of reusable software components, and hence improved specialization

and division of knowledge.

Availability of reusable components may lead to component markets, given

requisite social learning in the development of standards, new distribution channels

and pricing techniques. Markets themselves would foster additional social learning

by generating new information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Exponential growth is checked by the difficulty of social learning: more rapid

economic development depends on learning better at all levels of economic

organization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Preface

The fundamental aim of this dissertation is to achieve a better understanding of

economic development. More particularly, the aim is to understand the processes

through which the capital structure - our tools of production and their

interrelationships - develops and improves. The dissertation seeks, accordingly, to

contribute both to the theory of economic development and to capital theory,

(indeed, I view these as inextricably related), by addressing the problem of how

new and better systems of production are conceived and built. Why, then, does the

paper focus primarily on software development?

The reason is that knowledge is prominent in software as in no other kind of capital

good. Following Carl Menger, I view capital goods as being fundamentally

embodied knowledge. This dissertation will emphasize this view, and strive to

explicate the processes by which knowledge is elicited, discovered, and embodied

in the capital structure. With most other kinds of capital goods it is easy to overlook

how much knowledge is built into them, because what we see is the steel and glass,

the copper and plastic, the silicon and polymer in which that knowledge is

embedded. Software, by contrast, we do not see at all; we think about it

independent of its physical form. We are equally comfortable thinking about it as

printed out on paper, stored magnetically on a floppy disk, or loaded and running in

the circuits of a computer. Indifferent to the physical medium in which it is

embodied, we are readily able to focus on the knowledge that software embodies.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

While the paper focuses on software, the principles uncovered apply to capital

goods in general. All kinds of capital goods are embodied knowledge; for all of

them knowledge is of the essence, not the physical substrate on which that

knowledge is imprinted. The software development experience has parallels in the

development of physical capital. In the concluding chapter, we will take up these

parallels directly.

The first chapter lays the theoretical foundation for the investigation. After pointing

out that neoclassical growth theory offers little insight into the role of capital in

economic development, it draws on Austrian capital theory for understanding of the

relationships between knowledge and capital, and of the structural aspects of

capital. It finds that, given the nature of capital goods, capital development is a

social learning process. Chapter 2 then provides an overview of the history and

terminology of software development, introducing some of the main issues which

subsequent chaptqgs will investigate for illumination of this process.

Chapter 3 discusses initial software development, looking particularly at the

evolution of the procedures and tools used. It demonstrates that the software

development process is one of interactive, social learning. Chapter 4 goes on to

investigate the on-going development of software - software maintenance - that

occurs after initial products are delivered. The purpose of the chapter is to assess

the characteristics of software which is able to evolve readily; we find modularity to

be of fundamental importance.

Chapter 5 broadens the perspective to examine the prospects for software

component markets and the benefits those markets promise. It treats the evolution

of such markets, and the institutions and attitudes requisite thereto, as another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

species of social learning. Chapter 6 summarizes, draws parallels to the

development of physical capital goods, and draws implications about the rate

economic development, both for growth theorists who would study it, and for

practitioners who would improve it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Knowledge Capital and the Theory of Economic Growth

Men, my brothers, men, the workers, ever reaping something new,
That which they have done but earnest o f the things that they shall

do.

For I dipped into the future, far as human eye could see,
Saw the Vision o f the world, and all the wonder that would be.

- Tennyson, "Locksley H a ll"

1. The subject of this investigation: Better tools as a cause of the

wealth of nations

The dissertation is motivated by the same question which motivated Adam Smith's

An Inquiry into the Nature and Causes of the Wealth of Nations (1976): how do we

account for human beings' economic advancement? How is it that our race of

talking primates has been able to advance from barbarism to abundance (at least in

certain areas of the world)? What is the nature of the process by which we are able,

over time, to get more and better of the "necessaries and conveniencies of life" for

the same amount of effort?

My piece of this large inquiry takes as its point of departure the observation that

human society advances in economic well-being by increasing its productivity per

person and by extending trade, and that these improvements depend on appropriate

rules of conduct. Human advancement is thus an intertwined evolution of the

capital structure, the catallaxy, and the common law. I focus on the first of these

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

and ask, how do people in a society improve their productivity - their ability to

produce more of the things they wants with a given amount of human effort? They

does so fundamentally by increasing their knowledge of productive relationships,

and building this knowledge into better tools - better devices which extend their

physical, perceptual, and mental faculties for understanding and transforming the

world they live in. This view of human advancement I derive from the Austrian

School of economics, and in particular from the founder of the Austrian School, Carl

Menger.1

Of course we may improve productivity by working harder, but the effects of

greater exertion are far less than the effects of better tools. In a task such as reaping

grain, for example, even the most heroically increased exertions of a barehanded

reaper yield far smaller productivity gains than equipping an average worker with a

steel sickle. Also we may improve productivity by producing greater numbers of

the same kinds of tools, but here again the effects fall far short of the effects of

building better tools. Even if we were to equip everyone in the village with a steel

sickle, productivity at harvest time must fall far short of what it would be if we were

to equip only one worker with a John Deere grain combine. Better tools, then, are

the key to greater productivity. For a society to improve its productivity, that

society must improve the quality of its tools - its capital goods.

The context in which capital is meaningful is production. Production is a matter of

transforming our condition from a less-preferred to more-preferred state. What

1 Essential works in this tradition are Menger (1981), Bohm-Bawerk (1959), Hayek
(1935 and 1941), Mises (1966), and Lachmann (1978).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

transformations will answer the purpose, and how to carry them out, are the crucial

questions. Any capital is going to be some kind of embodied knowledge of such

transformations and how to accomplish them. Capital is saved-up learning which

gives us a head start on production.

How does a society improve the quality of its capital goods? How does it manage

to save up its knowledge of useful transformations? What is the nature of the

process, and what is involved in the process? These are the questions to be

explored in this dissertation.

2. Irrelevance of mainstream "theory of economic growth"

Because tools are so important to economic development and growth, one might

expect to find insight into these questions in the branch of economics known as the

theory of economic growth. But in fact, with the exception of Joseph Schumpeter's

work (1934), growth theory, both the traditional and the "new growth theory," is

engaged in a different kind of inquiry. Growth theory has very little to say about the

development of the new and better tools we ultimately depend on for economic

advancement - the development of the capital structure. Notwithstanding the

merits this body of work may have for understanding other aspects of economic

growth, it has little relevance for the present inquiry.

2.1. Problematic aspects of traditional growth theory: the Harrod-Domar-Solow

approach

At the center of neoclassical growth theory is the Harrod-Domar approach (Harrod

1939, Domar 1946 and 1957), which was elaborated by Robert Solow in work that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

helped win him the Nobel prize. (1956, 1970) Although this body of work refers to

capital extensively, it says very little about capital, and nothing about how the

capital structure evolves. In fact, it assumes that the capital structure does not

evolve in any qualitative way. There are three closely interrelated assumptions in

this theory which necessarily eliminate consideration of actual improvements to

capital goods and the capital structure.

It ignores the heterogeneity of capital

A fundamental problem with the Harrod-Domar-Solow strand of growth theory for

our purposes is that it treats capital as homogeneous. In Harrod's model, capital is a

homogeneous stuff that can be accumulated incrementally. The "actual saving in a

period . . . is equal to the addition to the capital stock,"2 Harrod tells us. This

indicates that quantities of "capital" may be indefinitely built up. Solow's

discussion of the model makes this more explicit: he defines "the stock of capital"

as "the sum of past net investments" (1970, p. 4, emphasis added), and says that the

"capital requirement per unit of output [is a] fixed number. . . in the sense that [it

does] not change in the course of time" (1970, p. 9). Capital is not only

homogeneous in time, according to Solow, but also homogeneous across time.

This mechanical approach to capital treats it like a multiplier: more capital means a

bigger number multiplying the effort of labor. E.g., if we have 100 units of K at time

0, and, say, 5 laborers, then we get 5 * 100 = 500 units of output. Then we take

some savings from that output and (less depreciation) add it to the 100. Suppose

2 Harrod (1939, p. 18). All references to Harrod are from this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

net savings are 3, then in period 1 we have 5 * 103 = 515 units of output. Capital

is essentially all of the same kind and quality. Its value is its purchase price; it can

be increased only quantitatively. Given fixed input of human effort, getting more

output with the same "amount" of capital is not possible.

But capital in the world is not homogeneous. As Ludwig Lachmann points out,

"capital resources are heterogeneous While we may add head to head . . . and

acre to acre . . . we cannot add beer barrels to blast furnaces nor trucks to yards of

telephone wire." (Lachmann 1978, p. 2) Furthermore,

for most purposes capital goods have to be used jointly.
Complementarity is of the essence of capital use. But the heterogeneous
capital resources do not lend themselves to combination in any arbitrary
fashion (1978, p. 3)

Some capital combinations are useless: beer barrels and blast furnaces, for example.

But other combinations multiply the value of one another, e. g., fertile fields and

advanced farm machinery. To quote from Lachmann again,

The theory of capital must therefore concern itself with the way in which
entrepreneurs form combinations of heterogeneous capital resources in
their plans, and the way in which they regroup them when they revise
these plans. A theory which ignores such regrouping ignores a highly
significant aspect of reality: the changing pattern of resource use which
the divergence of results actually experienced from what they had been
expected to be, imposes on entrepreneurs. (1978, p. 35)

The theory of capital must also concern itself with the way in which entrepreneurs

develop new, different, and better heterogeneous capital resources.

We note in passing that the Harrod-Domar-Solow theory not only fails to

differentiate between kinds and orders of capital, it also fails to differentiate even

between capital goods and consumption goods. Harrod states that, "No distinction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

is drawn in this theory between capital goods and consumption goods. In

measuring the increment of capital, the two are taken together; the increment

consists of total production less total consumption." (p. 18) This is another way of

saying that saving equals investment, and that all savings automatically become

capital goods. This failure to distinguish between the different categories of goods

produced leads Harrod to such remarkable statements as, "a condition of general

over-production is the consequence of producers in sum producing too little." (p.

24) In Solow's development of Harrod's work the blurring of capital goods and

consumption goods is made even more explicit: "The model economy produces

only one composite commodity, which it can either consume currently or

accumulate as a stock of capital."3

Modeling production in this way helps illuminate the role of savings in economic

development, and draws attention to interesting issues concerning the sustainability

of growth rates under particular conditions. In particular it helps clarify the

conditions under which a dynamic equilibrium might be possible.But the present

investigation is concerned with how we develop new and better means of

producing the things we want; therefore a theory that assumes away differences

between the things we want and the means of producing them is not of use here.

It assumes quantifiability of capital

Traditional growth theory also relies on a mathematical treatment of capital: capital

appears in the models as a numerical variable in a production function. Such a

3 Solow (1970, p. 9). Unless otherwise noted, all references to Solow are from this
work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

treatment implies that capital can be meaningfully quantified - measured in some

way. Harrod, for example, speaks of "the value o f ... capital goods" (p. 16) and

posits that "actual saving in a period ... is equal to the addition to the capital stock"

(p. 18). The terminology gives the impression that capital can be easily measured,

and the equations depend on the economy's capital stock being quantifiable.

But capital is ultimately unmeasurable.4 As Harrod's colleague Joan Robinson

observed, "no one ever makes it clear how capital is to be measured."5 Israel

Kirzner addresses the immeasurability of capital in his An Essay on Capital (1966).6

First he dispenses with the idea that capital can be measured in raw physical terms.

The truth is that the heterogeneity of the various physical items in the
stock not only constitutes a well recognized barrier to the construction of
such a measure, but represents at the same time the reason why such a
measure can play no significant role at all in the analysis of decision
making in the course of capitalistic production. The producer simply
cannot afford to ignore the heterogeneity of the various items in the
capital stock, (p. 105)

Kirzner then turns to "backward-looking" measures of the existing capital stock: the

past sacrifices - the costs - involved in building up that stock. This is the kind of

measure most in accordance with the Harrod-Domar-Solow methodology, since

4 An economy's aggregate capital stock cannot be measured, although a firm's can
be, in a sense: a firm can calculate the money value of its capital. Economic
calculation achieves a rough and ready way of measuring the value of capital for a
given profit center.

5 Joan Robinson, The Rate of interest, and other Essays, p. 54, quoted in Lachmann
(1978), p. 5.

6 See also Hayek (1935) and Lachmann (1975 and 1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

they declare the value of new capital to be that of the output not consumed in a

period. Kirzner points out that these past costs are generally of different kinds and

made at different dates; accordingly they cannot be meaningfully summed.

Likewise "forward-looking" measures of capital are unsatisfactory. These are the

efforts "to measure the capital stock by the contribution to future production that it

is able to make" (p. 113). With these measures there are a number of difficulties,

the most important being that future value depends on many individuals' plans for

the capital (which has alternative uses), and that these plans may be mutually

inconsistent. "[I]t is in many respects a misleading simplification to talk as if a given

resource were unambiguously associated with a definite flow of output, in the sense

that such an output flow is forthcoming automatically from the resource." (p. 114).

The point here is not simply that it is technically difficult to quantify the amount or

the value of capital, but that the notion of an amount of capital has at best an

extremely imprecise meaning. It is imprecise even as an accounting measure within

a firm, where plans for the use of different pieces of capital can be kept more or less

compatible. But as the level of aggregation increases, the imprecision grows

rapidly. "The amount of capital" is at best a useful mental shorthand. Treating it as

if it were precise, in a mathematical equation, is more likely to confuse than to

clarify.

It assumes a fixed functional relationship between aggregate capital and

output

The two problems mentioned above - the twin assumptions of homogeneity and of

quantifiability of capital - are probably consequences of this third: that the theorists

are determined to represent the relationship between capital and output as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

functional relationship, in which the function itself is not allowed to change.7 To

model production in a functional relationship with capital necessitates an

interpretation of capital as homogeneous, so that it may be aggregated

meaningfully, and as quantifiable (at least in principle), so that this aggregation may

be represented by a numerical variable.

The only place Harrod's model8 might admit changes in the quality of people's

tools, and hence in the production function, is in C, the "capital coefficient,"

defined as "the value of the capital goods required for the production of a unit

increment in output." But as Harrod presents C, changes in its value are

7 Technological change may sometimes occur, but only as an exogenous shock.

8 Harrod's 1939 article, "An Essay in Dynamic Theory" entails the following
elements:

G the geometric rate of growth of output or income
Gw the "warranted" rate of growth
xq, x i output, periods 0 and 1
s the savings rate as a fraction of income
C the "capital coefficient," "the value of the capital goods required for the

production of a unit increment in output"
Cp the actual capital coefficient; "the value of the increment of capital per unit

increment of output actually produced"

While G is simply the growth rate that actually occurs, Gw, the warranted rate "is
taken to be that rate of growth which, if it occurs, w ill leave all parties satisfied that
they have produced neither more nor less than the right amount. ...it w ill put them
into a frame of mind which will cause them to give such orders as w ill maintain the
same rate of growth."

The model that Harrod puts together from these concepts depends on two closely
related equations. His "Fundamental Equation" is Gw = s/C. This gives the
warranted rate. The formula for the actual rate of growth is G = s/Cp. The whole
theory turns on divergences between these two.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

unimportant. While he tells us that C can change, beyond vague references to "the

state of technology" we are given no indication of how, when, or why it might do

so. More importantly, in Harrod's actual description of the workings of the

economy, he allows for no adjustments in technology. The only kind of adjustment

his model allows to producing agents is a change in how much they produce - by

the same technology. If, for example, producers find that they have not sold all of

their output in one period, they respond by cutting back production in the next

period; these cutbacks are general (because there are no different kinds of goods),

and therefore the economy falls off Harrod's famous "knife-edge." What producers

never do, in a Harrod world, is react to poor sales by improving their tools so that

next year they can produce at lower cost and sell all their output by offering it at a

more attractive lower price.

For Solow, the fixed relationship between capital and output is made quite explicit:

"the capital/output ratio is ... constant - this is one of the defining characteristics of

a steady state... (p. 33) Solow assumes constant returns to scale (p. 34), and

contrives the model so that "technological progress augments labor only." (p. 35)

That is, technological progress improves what human workers can do, not what

their machines and devices can do. Increasing advances in productivity per person

resulting from new capital goods are ruled out. In a Solow world there can be no

fine new machines with which a company may halve its work force and still

produce the same output.^

9 This is true unless "the capital stock" can be "constant" even while the
composition of that capital stock (to use a term Solow does not) changes. Solow
suggests such a possibility:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

The problem with an unchanging production function (let alone a function with

constant returns to scale), is that it implies an absence of change in how things are

done. But again, our inquiry is concerned with how we come to develop new tools

and methods, which mean new and different ways of producing - a different

"production function." Further, given the unfathomably complexity of the

relationships among productive inputs, it would seem to be straining the metaphor

to describe production as a function at all. It seems necessary, instead, to address

directly the structural interrelationships among capital goods.

2.2. Missing structural elements: complementarity and indivisibility

Because it assumes that capital is homogeneous and unchanging except in quantity,

the mainstream theory does not address fundamentally important structural aspects

of capital which have been elucidated by the Austrian School, especially Ludwig

It should be realized that this reduction of technological progress to the
efficiency-unit content of an hour of labour is a metaphor. It need not
refer to any change in the intrinsic quality of labour itself. It could in
fact be an improvement in the design of the typewriter that gives one
secretary the strength of 1.04 secretaries after a year has gone by. What
matters is this special property that there should be a way of calculating
efficiency-units of labour, dependent on the passage of time but not on
the stock of capital, so that the input-output curve doesn't change at all
in that system of measurement, (p. 35)

The passage implies that improvements in capital can occur (e.g., the better
typewriter) independent of a change "in the stock of capital." Surely this
conception presents difficulties in how we measure the stock of capital, and invites
the question of why technology which yields a better typewriter design is not
"capital-augmenting."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

Lachmann. A realistic view of the process of capital accumulation and its effects

must take into account several factors that Harrod-Domar-Solow theory ignores.

The core point is that capital accumulation generally involves a lengthening of the

capital structure, with what Lachmann calls a '"division of capital,' a specialization

of individual capital items, which enables us to resist the law of diminishing

returns" (1978, p. 79). Capital accumulation is primarily manifested not in the

addition of more of the same. It occurs in what we might call a "complexifying" of

the capital structure, an increasing in intricacy of the pattern(s) of complementarity

among increasingly specialized capital goods, born in the on-going growth and

division of knowledge.10 Capital accumulation "does not take the form of

multiplication of existing items, but that of a change in the composition of capital

combinations. Some items will not be increased at all while entirely new ones will

appear on the stage" (Lachmann 1978, p. 79). The homogeneity assumption

obscures this key fact.

In pointing to "capital combinations," Lachmann stresses complementarity in this

kind of process, and indivisibility of capital goods that is usually involved.

Generally the various items in a new, more complex capital structure have no

usefulness at all except in combination with the other items, and those items are

indivisible. "It w ill not pay to install an indivisible capital good," says Lachmann,

"unless there are enough complementary capital goods to justify it. Until the

10 Lachmann, following Hayek (1935), holds that over time there develops "an
increasing degree of complexity of the pattern of complementarity displayed by the
capital structure." (1975, p. 4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

quantity of goods in transit has reached a certain size it does not pay to build a

railway" (p. 80).

A consequence of complementarities in capital use is that new economies of scale

become possible, or rather economical, as a result of capital accumulation. These

economies are the consequence not of the size of particular production processes

(the sense in which we usually think of scale economies), but of the scope of their

interaction. It makes sense to invest in a large-scale, indivisible capital item only in

the presence of the necessary complementary capital. Lachmann gives a strong

illustration: "The accumulation of capital does not merely provide us with the

means to build power stations, it also provides us with enough factories to make

them pay and enough coal to make them work" (p. 80). The greater scale

economies possible in the power stations and the factories depend for their

economic feasibility on one another. Similarly, it is said that the spreadsheet

program drove the explosive sales of personal computers over the last decade - the

tremendous economies that have been achieved in computer hardware over the last

decade have been achieved through very large scale production, which itself has

been driven by high-volume sales of popular software packages such as

spreadsheets. On this view capital accumulation can affect growth in a way that is

more exponential than geometric.

In Orowth Theoryr Robert Solow defines the stock of capital in his model as "the

sum of past net investments" (1970, p. 4), maintaining the idea that new capital is

simply added onto old. But because complementarity is fundamental to capital -

because capital goods must be used jointly with some specific others - old capital is

often destroyed in the process of capital accumulation; that is, its value is destroyed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

This is another basic fact of economic life that the Harrod-Domar-Solow approach

ignores. Millions of dollars worth of whaling equipment was destroyed by the

building up of the kerosene industry; vast quantities of iron-producing capital was

destroyed by the advent of the capital goods that produce steel; software

applications are made obsolete every few months as better come along. In the

regrouping process that Lachmann describes, "some of these capital goods w ill have

to be shifted to other uses while others, which cannot be shifted, may lose their

capital character altogether. Thus the accumulation of capital always destroys some

capital" (Lachmann 1978, p. 80).

Increasing returns to scale are also absent from the Harrod-Domar-Solow approach.

Growing economies of scale are not inevitable, but likely in a free economy; they

can and do result from the capital accumulation as it occurs in practice. (Young

1928) In Lachmann's terms,

We conclude that the accumulation of capital renders possible a higher
degree of the division of capital; that capital specialization as a rule takes
the form of an increasing number of processing stages and a change in
the composition of the raw material flow as well as of the capital
combinations at each stage; that the changing pattern of this composition
permits the use of new indivisible resources; that these indivisibilities
account for increasing returns to capital... (p. 85).

Theorists such as Harrod and Solow, and even Paul Romer, whose work we take up

below, assume a diminishing marginal productivity of capital. This assumption

would make perfect sense if the kinds of capital being used did not change, but

because they do change, it makes no sense at all, not in consideration of the

economy as a whole, over time. Because the capital structure improves, the

tendency is to increasing marginal productivity of capital.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

Again, while one can understand the desire of Harrod and his followers to simplify

aspects of real world activity for convenience in their model, one must be wary of

such simplifications as those made regarding capital. Simplifications which

misrepresent and obscure do not aid understanding.

2.3. Shortfalls in the "new growth theory" of Paul M. Romer

In recent years, the theory of economic growth has been developed in what is

known as the "new growth theory"; a major contributor to this literature is Paul M.

Romer.11 Romer brings up some of the issues with which we are concerned in this

paper, and shows real insight into their importance.

Valuable additional insights...

While most growth theory has posited "given technology," or, where technological

change is allowed at all, treated it as exogenous, recent work has dropped this

assumption. Nelson and Winter (1982), for example, allow endogenous

technological change into their evolutionary simulation model. Romer addresses

endogenous technological change directly. Indeed, the title of a recent paper of his

is "Endogenous Technological Change." (1990a) Among the premises of his

argument which constitute new departures for growth theory are "that technological

change - improvement in the instructions for mixing together raw materials - lies at

11 See especially (1986, 1990a, and 1990b). Other important contributions include
Lucas (1988) and Arrow (1962). For useful surveys of relevant work, see Diamond
(1990), especially Dixit (1990) and Stiglitz (1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

the heart of economic growth," and "that technological change arises in large part

because of intentional actions taken by people who respond to market incentives."

Whereas Nelson and Winter retained the notion of homogeneous capital, Romer

goes a step further, and explicitly includes heterogeneity of capital goods. "The

unusual feature of the production technology assumed here," Romer says, "is that it

disaggregates capital into an infinite number of distinct types of producer durables."

(1990a, p.S80)

Furthermore, Romer also brings out the link between knowledge and capital,

ascribing the variety of capital goods to the different knowledge embodied in

capital. He treats "long-run growth" as "driven primarily by the accumulation of

knowledge by forward-looking, profit-maximizing agents," with a "focus on

knowledge as the basic form of capital." (1986, p. 1003) This knowledge is

embodied in capital goods:

The research sector uses human capital and the existing stock of
knowledge to produce new knowledge. Specifically, it produces designs
for new producer durables. An intermediate-goods sector uses the
designs from the research sector together with forgone output to produce
the large number of producer durables that are available for use in final-
goods production at anytime. (1990a, p.S79)

Additionally, Romer takes seriously increasing returns in production where

knowledge is increasing. His 1986 paper, entitled "Increasing Returns and Long-

Run Growth," gives a "view of long-run prospects for growth" in which "per capita

output can grow without bound, possibly at a rate that is monotonically increasing

over time. The rate of investment and the rate of return on capital may increase

rather than decrease with increases in the capital stock." (p. 1003)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

In this work, then, we have reason to hope for some illumination about the

relationship between capital goods and economic development.

... but failure to develop the insights

These hopes are disappointed, however. Romer seems not so much interested in

exploring the implications of his insights as preoccupied with forcing those insights

into the Procrustean bed of mathematical tractability. As a result, his treatment of

capital and its role in production is still very meager. Indeed, his models take the

life out of his introductory discussions.

Although Romer talks of and models technological change, the change he talks

about is superficial. Consider the production function from the model in his 1990

paper:

[A] simple functional form for output is the following extension of the
Cobb-Douglas production function:

Y(Hr ,L ,x) = H raLbf j xi'-°-b
i = i

This production function differs from the usual production function only
in its assumption about the degree to which different types of capital
goods are substitutes for each other. In the conventional specification,
total capital K is implicitly defined as being proportional to the sum of all
the different types of capital. This definition implies that all capital
goods are perfect substitutes. One additional dollar of capital in the form
of a truck has the same effect on the marginal productivity of mainframe
computers as an additional dollar's worth of computers. [This equation]
expresses output as an additively separable function of all the different
types of capital goods so that one additional dollar of trucks has no effect
on the marginal productivity of computers. (1990a, p. S81)

Y here is "final output"; Hr is "human capital devoted to final output"; L is labor,

and the various capital goods are the indexed values x,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

To treat "output as an additively separable function of all the different types of

capital goods" is to treat capital as homogeneous in fundamentally important

respects, notwithstanding Romer's efforts to consider "distinct types of producer

durables." Defining his production function in this way allows Romer to add

additional types of capital goods indefinitely, just as Harrod could add additional

numbers of capital goods indefinitely. In both cases, only the magnitude of the

capital variable changes, not the form of the function. Implicitly, then, capital

goods are all of a kind in respect to how they interact. To a given capital structure,

add buggy whips or microchips (for Harrod add new quantities; for Romer, add new

designs) and the effect on output w ill be the same, although the goods produced

w ill differ. Capital is aggregable and thus implicitly homogeneous. Homogeneity

of capital is further implied by Romer's construction of the production function as

homogeneous of degree one (not so different from Solow after all). Where there are

constant returns to scale, truly new and better production processes, which let us

produce more with the same amount of input, are ruled out.

Lachmann's point that "[cjomplementarity is of the essence of capital use," (1978, p.

3, emphasis in original) is just as damaging to Romer's actual formulation of his

model as it is to the work of Harrod. Romer leaves no room for complementarity,

nor its concomitant substitutability (and hence capital destruction). In brief, Romer

leaves no room for any of the structural aspects of capital that we will find to be of

fundamental importance. To illustrate briefly, consider the relationships among

three elements of the software capital structure: the programming system Smalltalk,

the programming language COBOL, and WindowBuilder, a set of tools for

developing graphical user interfaces. WindowBuilder is built in Smalltalk, for use

with Smalltalk - without Smalltalk present it cannot work. COBOL is an older

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

programming language that is arguably being made obsolete by object-oriented

languages such as Smalltalk. How are we to make sense of "additive separability"

in respect to these three? Not only are Smalltalk and WindowBuilder directly

complementary, in the strict sense that one requires the other to be running on the

same computer, but also WindowBuilder itself, having been built in Smalltalk,

could never have come into being without Smalltalk. Suppose we "subtract"

Smalltalk from the equation, what becomes of WindowBuilder? Then it never was.

These are not "additively separable." Furthermore, COBOL is being replaced by

Smalltalk in certain cases. Then is the productive power of Smalltalk "added" to

that of COBOL, or does it subtract from it?

In this work, we hold structural issues of complementarity and substitutability, as

well as dependencies of one design on another, as of WindowBuilder on Smalltalk,

to be of fundamental importance. We will find no help with these in the "new

growth theory." Romer says, "An investigation of complementarity as well as of

mixtures of types of substitutability is left for future work." (1990a, p. S81)

The main question this work seeks to help answer is, "What is the nature of the

process by which people learn how to fashion better tools?" Here again, Romer

gives little help. Within his broader model of a three sector economy, he models

technological innovation as occurring in a research sector. He models the economy

in three sectors. The research sector draws on available human capital and, making

use of the current stock of technological knowledge, produces new technological

knowledge in the form of designs for production goods. This new knowledge is

then licensed to the production goods sector, which may build the designs into new

and better capital equipment in subsequent periods. The new capital equipment is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

then utilized by the final goods sector to produce consumable output. His

substantive description of the process by which people learn how to fashion better

tools is as follows:

It remains to specify the process for the accumulation of new designs,
that is, for the growth of At. As noted above, research output depends
on the amount of human capital devoted to research. It also depends on
the stock of knowledge available to a person doing research.

Romer continues,

If designs were treated as discrete indivisible objects that are not
produced by a deterministic production process, the production
technology for designs would have to take explicit account of both
integer constraints and uncertainty. There is no doubt that both
indivisibility and uncertainty are important at the micro level and over
short periods of time. The simplifying assumption made here is that
neither is crucial to a first-pass analysis of technological change at the
aggregate level, (p. S82)

After presenting an adjusted formalization of the model, he continues, "With this

formal structure, the output of new designs produced by researcher j can be written

as a continuous, deterministic function of the inputs applied." (p. S83)

Given our purposes, this is disappointing. Having been urged so far in the paper to

recognize the importance of technological progress, we may naturally ask of it,

"what is the nature of the process?" If so, we must content ourselves with the

answer that technological progress is "a continuous, deterministic function of the

inputs applied," that is, human capital and the stock of knowledge. It amounts

essentially to this: when well-trained researchers are given a lot of good

information, they think up new technologies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

The new growth theory has little to say about the process by which technological

progress occurs. Indeed, it does not seem to be concerned with accounting for

human economic advancement. Romer's paper does not; its attention is on

requirements for and characteristics of a balanced growth equilibrium that is

generated by the model as specified. Because it is based in a general equilibrium

framework, there is no room for process: there is no uncertainty, no real time, no

need for adjustment, no capital destruction. None of the richness of a mutual

adjustment process in conditions of uncertainty is to be found here. The manner in

which Romer formalizes his discussion takes the richness out of it, and leaves it in

the end little better, for understanding the process of economic development, than

the traditional models.

Like Harrod and Solow, Romer neglects the structural elements of capital. He

chooses to ignore that the growth and division of knowledge leads to a growing

complexity of complementary relationships among capital goods. For Romer,

introducing new knowledge into production is essentially a research effort, not a

coordination challenge.

3. Capital goods as knowledge

To inform our examination of the process of capital development, we look in this

section at capital itself. We find a fundamental relationship between knowledge

and capital. Indeed, we regard capital as embodied knowledge of productive

processes and how they may be carried out. Different varieties of knowledge are

involved, as well as different kinds of embodiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

3.1. Embodied knowledge

Carl Menger stresses the role of knowledge in human economic advancement: that

knowledge is embodied in capital goods is fundamental to his thinking. He writes,

"The quantities of consumption goods at human disposal are limited only by the

extent of human knowledge of the causal connections between things, and by the

extent of human control over these things." (1981, p. 74) As this statement comes

in a passage contrasting simple collection of first-order goods with employing goods

of higher order in production processes, it is clear that we are to take the use of

higher-order goods - capital goods - as the application of the knowledge Menger

speaks of. When we know how to produce in a roundabout way, we employ

capital goods for the purpose. Our knowledge is to be found in practice not in our

heads, but in the capital goods we employ. Capital is embodied knowledge.

In particular, capital equipment - tools - embody knowledge, knowledge of how to

accomplish some purpose.12 Much of our knowledge of the causal relationships

12 Hayek writes,

Take the concept of a 'tool' or 'instrument,1 or of any particular tool such
as a hammer or a barometer. It is easily seen that these concepts cannot
be interpreted to refer to 'objective facts,' that is, to things irrespective of
what people think about them. Careful logical analysis of these
concepts w ill show that they all express relationships between several (at
least three) terms, of which one is the acting or thinking person, the
second some desired or imagined effect, and the third a thing in the
ordinary sense. If the reader will attempt a definition he w ill soon find
that he cannot give one without using some term such as 'suitable for' or
'intended for' or some other expression referring to the use for which it
is designed by somebody. And a definition which is to comprise all
instances of the class w ill not contain any reference to its substance, or
shape, or other physical attribute. An ordinary hammer and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

between things, and of how to effect the changes we desire, is not articulate but

tacit knowledge. In the beginning of Wealth of Nations, Adam Smith speaks of the

"skill, dexterity, and judgment" (p. 7) of workers; these attributes are a kind of

knowledge, a kinesthetic "knowledge" located in the hands rather than in the head.

The improvements these skilled workers make in their tools are embodiments of

that "knowledge." The very design of the tool passes on to a less skilled or

dexterous worker the ability to accomplish the same results. Consider how the

safety razor enables unskilled and clumsy academics to shave with the blade always

at the correct angle, rarely nicking ourselves. How would we manage with straight

razors? The skilled barber's dexterity has been passed on to us, as it were,

embodied in the design of the safety razor.

Adam Smith gives a clear example of the embodiment of knowledge in capital

equipment in his account of the development of early steam engines, on which:

a boy was constantly employed to open and shut alternately the
communication between the boiler and the cylinder, according as the
piston either ascended or descended. One of those boys, who loved to
play with his companions, observed that, by tying a string from the
handle of the valve which opened this communication to another part of
the machine, the valve would open and shut without his assistance, and
leave him at liberty to divert himself with his playfellows, (p. 14)

The tying on of the string, and the addition of the metal rod which was built on to

subsequent steam engines to accomplish the same purpose, is an archetypal case of

steamhammer, or an aneroid barometer and a mercury barometer, have
nothing in common except the purpose for which men think they can be
used. (1979, p. 44)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

the embodiment of knowledge in a tool. The boy's observation and insight were

built into the machine for use indefinitely into the future.

3.2. Knowledge is of the essence

The point here is more radical than simply that capital goods have knowledge in

them. It is rather that capital goods are knowledge, knowledge in the peculiar state

of being embodied in such a form that they are ready-to-hand for use in production.

The knowledge aspect of capital goods is the fundamental aspect. Any physical

aspect is incidental.

A hammer, for instance, is physical wood (the handle) and minerals (the head). But

a piece of oak and a chunk of iron do not make a hammer. The hammer is those

raw materials plus all the knowledge required to shape the oak into a handle, to

transform the iron ore into a steel head, to shape it and fit it, etc. There is a great

deal of knowledge embodied in the precise shape of the head and handle, the

curvature of the striking surface, the proportion of head weight to handle length,

and so on.

Even with a tool as bluntly physical as a hammer, the knowledge component is of

overwhelming importance. With precision tools such as microscopes and

calibration instruments, the knowledge aspect of the tool becomes more dominant

still. We might say, imprecisely but helpfully, that there is a greater proportion of

knowledge to physical stuff in a microscope than in a hammer.

With computer software, on which we w ill be focusing through most of this work,

we have a logical extreme to inform further this approach to understanding capital

goods. Software is less tied to any physical medium than most tools. Because we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

may with equal comfort think of a given program as a program, whether it is printed

out on paper, stored on a diskette, or loaded into the circuits of a computer, we

have no difficulty distinguishing the knowledge aspect from the physical aspect with

a software tool. Of course, to function as a tool the software must be loaded and

running in the physical medium of the computer, and there are definite physical

limits to computation. (Bennet 1985) Nevertheless, it is in the nature of computers

and software to separate clearly the knowledge of how to accomplish a certain

function from the physical embodiment of that knowledge.

The distinctness of the knowledge embodied in tools from the physical medium in

which it is embodied was brought out in an remarkable exchange between two

engineers working on a moonshot. One, literally a rocket scientist responsible for

calculating propulsion capacity, approached the other, a software engineer. The

rocket scientist wanted to know how to calculate the effect of all that software on

the mass of the system. The software engineer didn't understand; was he asking

about the weight of the computers? No, the computers' weight was already

accounted for. Then what was the problem, asked the software engineer. "Well,

you guys are using hundreds of thousands of lines of software in this moonshot,

right?" "Right," said the software engineer. "Well," asked the rocket scientist, "how

much does all that stuff weigh?" The reply:"... Nothing!!"13

Because the knowledge aspect of software tools is so clearly distinguishable from

their physical embodiment, in investigating software capital we may distinguish

clearly the knowledge aspects of capital in general. While software may seem very

13 Personal conversation with Robert Polutchko of Martin Marietta Corp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

different from other capital goods in this respect, when we think in terms of the

capital structure, we find no fundamental difference between software tools and

conventional tools. What is true of software is true of capital goods in general.

What a person actually uses is not software alone, but software loaded into a

physical system - a computer with a monitor, or printer, or plotter, or space shuttle,

or whatever. The computer is the multi-purpose, tangible complement to the

special-purpose, intangible knowledge that is software. When the word-processor

or computer-assisted design (CAD) package is loaded in, the whole system becomes

a dedicated writing or drawing tool.

But there is no important difference in this respect between a word-processor and,

say, a hammer. The oaken dowel and molten steel are the multi-purpose, tangible

complements to the special-purpose, intangible knowledge of what hand tools are.

When the knowledge of what is a hammer is imprinted on the oak in the shape of a

smooth, well-proportioned handle, and on the steel in the shape, weight, and

hardness of a hammer-head; and when the two are joined together properly; then

the whole system - raw oak, raw steel, and knowledge - becomes a dedicated nail-

driving tool.

All tools are a combination of knowledge and matter. They are knowledge

imprinted on or embodied in matter. Software is to the computer into which it is

loaded as the knowledge of traditional tools is to the matter of which those tools are

composed.

If this is true, then knowledge is the key aspect of all capital goods, because the

matter is, and always has been, "there." As Bohm-Bawerk says in discussing what it

means to produce:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

To create goods is of course not to bring into being materials that never
existed before, and it is therefore not creation in the true sense of the
word. It is only a conversion of indestructible matter into more
advantageous forms, and it can never be anything else. (1959, p. 7)

Mankind did not develop its fabulous stock of capital equipment by acquiring new

quantities of iron and wood and copper and silicon. These have always been here.

Mankind became wealthy through developing the knowledge of what might be

done with these substances, and building that knowledge onto them. The value of

our tools is not in their weight of substances, however finely alloyed or refined. It is

in the quality and quantity of knowledge imprinted on them. As Carl Menger says

in his Principles14:

Increasing understanding of the causal connections between things and
human welfare, and increasing control of the less proximate conditions
responsible for human welfare, have led mankind, therefore, from a state
of barbarism and the deepest misery to its present stage of civilization
and well-being.... Nothing is more certain than that the degree of
economic progress of mankind w ill still, in future epochs, be
commensurate with the degree of progress of human knowledge.

3.3. Varieties of knowledge embodied in capital

In the above passage Menger asserts a dependency of economic progress on

progress of human knowledge. This sounds simple. Perhaps it would be simple if

knowledge were a simple, homogeneous something which could be pumped into a

society as fuel is pumped into a tank. But knowledge is heterogeneous; it is not all

of a kind. (Polanyi 1958, Hayek 1945, Lachmann 1986) There are important

differences among different kinds of knowledge.

14 (1981, p. 74). See also Vaughn (1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

Articulate and inarticulate knowledge

An important distinction in this respect is between articulate and inarticulate

knowledge. Some of our knowledge we can articulate: we can say precisely what

we know, and thereby convey it to others.15 But much of our knowledge is

inarticulate: we cannot say what we know or how we know it. Hence we cannot

explicitly convey that knowledge to others, at least not in words. The experienced

personnel officer cannot tell us how she knows that a certain applicant is unfit for a

certain job; she has "a feel for it." The skilled pianist cannot possibly tell us how to

play with deep expressiveness, although he clearly knows how. A child cannot

learn to hit a baseball from reading about it in a book, although the book might

help.

Furthermore, much of what we know we are not aware that we know. In such

cases we do not become consciously aware of our knowledge until it is somehow

brought to our attention, perhaps by our being asked to behave in a way that

conflicts with that knowledge. "Let's do such and such," we are asked. "No, that

won't work," we reply. "Why not?" "Well, it won't..," we say, but we can't really

say why until we have had time to think about it, and become explicitly aware, for

the*first time, of what we have long known. In this respect I remember my high

school physics teacher telling our class that we all "knew" the Doppler effect - that

the sound made by a moving object sounds higher pitched to us when the object is

approaching, and sounds lower-pitched when the object is moving away. He

15 Those other, of course, bringing to our words different experience and outlook,
w ill understand what we say somewhat differently from the way we do.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

smiled and made the sound every child makes when imitating a fast car going past.

Sure enough, the pitch goes from higher to lower - of course, I knew that; but I had

not known that I knew it.

Personal and intersubjective knowledge

There is also an important variety in what we may call the locations of knowledge.

It may be internal - located within a person - or external, embodied in some

intersubjective medium - located, as it were, among people, and therefore available

for common use. In each of these locations there can be both articulate and

inarticulate knowledge. I know my own verbalized thoughts and plans for the day,

facts I learned in school, my phone number, etc. This is articulate knowledge in my

own mind. Articulate knowledge can also be located externally, intersubjectively,

in a form in which it can be transferred among people. This is the case with books,

libraries, manuals, "for sale" signs, etc.

As we have seen, internal, personal knowledge may also be inarticulate. Most of

our physical skills are of this kind. Our habits seem to represent a kind of

inarticulate knowledge (in our habitual looking both ways before we cross streets is

the knowledge that streets are dangerous), as do rules of thumb ('honesty is the best

policy," "get it in writing"), and social mores (waiting in line in crowded settings).

Extremely important kinds of knowledge are both inarticulate and external to

individuals. Social institutions embody this kinds of knowledge. Language, for

example, embodies a great deal of shared knowledge, accumulated over ages

through interactions among people. As F.A. Hayek has stressed, there is a

tremendous amount of knowledge in market prices. (1945) Don Lavoie has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

developed this view (1985, Chapter 3), speaking of a "social intelligence" that

emerges out of the interactions of people, which the society as a whole has, but no

individual has.

In this category of inarticulate knowledge located external to individuals, and thus

available to be shared among individuals, is much of the knowledge embodied in

tools. The crucial knowledge referred to by Menger above is of a kind we don't

often think of as knowledge. It is not to be found in libraries or in books or in

written words at all. Rather it is to be found in the designs of the tools we use.

Much of it is inarticulate. Some may once have been articulated, but the

articulation is now lost. Much may never have been articulate at all. Consider, for

example, the ratio between the weight of a hammer head and the length of the

handle. Hammer makers "know" the acceptable bounds of this ratio. How do they

know? They know because the experience of generations has been handed down

to them. Users of hammers, ages ago, found hammers with handles too long or too

short to be uncomfortable; they discarded these and used the proper-sized ones

instead. They could not have said why they did so - they knew with their hands

and arms, not with their heads. When they selected new hammers, they chose the

ones with the "correct" ratio. From these choices hammer makers learned what the

correct ratio was. The knowledge was gradually built into hammers over time, in

an evolutionary fashion that depended on feedback from users. (Salin 1990)

A significant proportion of the knowledge we use in production is not in any person

or even group, but in the tools we use. I who use the hammer know nothing of

ergonomics, and have not the slightest idea what the correct ratio of head weight to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

handle length is. Nevertheless, when I drive a nail, I can tell if the hammer feels

right. Thus I use that knowledge. The knowledge is built into my hammer.

Kinds of knowledge used in the production of capital goods

We can distinguish three categories of knowledge that seem necessary in the

development of new capital goods. Knowledge from each of these categories is

embodied in every capital good.

1. Knowledge of function

The first category is simple: knowledge of what the tool must be able to accomplish

- its function. What is this tool supposed to be able to do? Consider the

development of the plow, for a simple example. Before plows can be developed,

there must be farmers with the knowledge of what plows must do: turn over earth.

Generally this function, whatever it might be, is only one part of a larger process

involving other tools and processes. Accordingly, knowledge of function must

include knowledge of the more encompassing production process of which this

new tool w ill be a part.

2. Knowledge of design

The next category is more complex: knowledge of what style of tool might

accomplish this - its design. Given the desired function, we need to know what

kind or kinds of devices can accomplish that function. The farmer knows he needs

earth turned over; now is needed knowledge of what kinds of devices, such as

sharp, hard metal wedges, will turn over earth. This knowledge itself w ill be multi

faceted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

Because we are thinking in the context of a production process, this knowledge

must comprise not only what that tool must do by itself (if, indeed, that has any

meaning), but what might be contributed by other capital inputs so that the

production process as a whole is successful. That is, what are the complementary

capital goods and human capital (e.g. people's skills and techniques for effectively

using such tools, as well as their habits and preferences) with which this sort of tool

might work? Depending on the state of agriculture and mechanics, for the plow

designer this might be knowledge of draft horses and harnesses, or of large tractors

and hydraulics. The design of the plow will be influenced significantly by these

complementarities, that is, knowledge of these complementarities must be built into

the plow itself. The nature of the complementary goods w ill impose constraints on

the design of the new tools, which must be made to fit. E.g., w ill the plow be

attached to draft horses by leather harness, or to a tractor by a hydraulic yoke? W ill

the plow be guided all day by hand through the uneven turf, so that it must be light

enough for a (strong) plowman to handle, or w ill hydraulics control the plow's

angle of attack, so that a small boy with a good eye may direct a whole gang of

plows from a tractor seat?

Not infrequently, important knowledge to be built into new capital goods w ill be

not so much of extant complementary goods as of goods which are likely to exist by

the time the new tool is actually produced. As technology continually leaps

onward, tool designers seem to plan their products in an anticipatory fashion: they

design new production goods with an eye to the necessary complementary goods

that seem likely to become available. The longer the period between design and

production, the more aggressively it makes sense to anticipate. We see this

anticipation clearly in the software industry. Large applications with demanding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

speed and memory requirements are designed well before such speed and memory

are affordable to the software's target audience. The software developers are willing

to plan so aggressively in the expectation that the price of processing power and

memory w ill continue to fall at rapid rates.

A valuable element of design knowledge that may be brought to the design of a

new tool is knowledge of how to make the design itself readily adaptable, so that

when the inevitable changes in conditions and complementary goods occur, it w ill

be relatively easy to alter the design as necessary. This is characteristic of what we

might call effective flexibility. We will have much to say about it in Chapter 4.

3. Knowledge of construction

The third category is knowledge of how to construct such a tool, how to effect that

design - its construction. The designer might see that his design w ill serve the

purpose called for, and yet not know how to build what he has designed. I might

design a baseball bat, for instance, specifying the kind of wood to be used and

laying out the exact shape in a drawing. But I don't know how to use a lathe.

Before the bat could come to be, another kind of knowledge than mine is required:

the knowledge of how to take a fully worked out bat design and embody that in

actual wood. The plow designer might specify precisely the shape and hardness of

the blade, yet have no idea of how actually to produce it. The actual plow must

ultimately embody also the knowledge of those who operate (and of those who

designed) the forge in which the plow is cast. Implicitly, then, construction

knowledge comprises knowledge of the higher-order tools, as well as raw and

intermediate inputs, with which the new tool might be built.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

Of course there is often a lot of overlap between knowledge of design and

knowledge of construction. Designers generally need to be cognizant of what

construction techniques are available, and often the availability of newer and better

techniques w ill inspire and inform new kinds of designs. But the two kinds of

knowledge are categorically different. Indeed, it is possible to design things which

cannot be built, given the present state of materials and engineering technique.

(Drexler 1991) We might design a variation on a spider web, for example,

specifying spider's silk as the construction material. While there would be no

ambiguity in the design, that design could not be built, because humans cannot yet

produce spiders' silk. One might design a plow, say, one tenth the weight of

current steel plows, and ten times harder and stronger, but such a design could not

yet be built because we do not know how to produce such a material.

3.4. A subjectivist view of capital

Before going further, let us set out more explicitly what is meant by capital. In

keeping with the tradition of the Austrian School, we take a subjectivist viewpoint,

and insist that to be capital, something must be treated as capital, that is, treated as

some kind of input in the production process. Lachmann writes,

Beer barrels and blast furnaces, harbour installations and hotel-room
furniture are capital not by virtue of their physical properties, but by
virtue of their economic functions. Something is capital because the
market, the consensus of entrepreneurial minds, regards it as capable of
yielding an income, (p. xv)

Something need not be physical to be capital. An obsolete railroad engine, though

blatantly physical, is not capital once it is abandoned and forms no part of any

production plan. On the other hand, something without physical properties, such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

as a set of sound construction processes, or a successful design type, or the

experience of skilled designer or craftsman, is capital because it is used (consciously

or unconsciously) as an input in the production process. Something is capital

insofar as it is an input into a production process. Hence knowledge can be capital

if it is treated as a (scarce) input in a production process.

As Bohm-Bawerk said, capital is "the produced means of production."16 "Produced"

suggests some directed activity to accumulate the knowledge as a means of

production. Bohm-Bawerk defines capital as "nothing but the sum total of

intermediate products which come into existence at the individual stages of the

roundabout course of progression (sic; "production"?)." (1959, p. 14) Again,

"intermediate product" suggests something produced, something intended to be

produced, as an intermediate good. Knowledge produced for use in production is

capital.

3.5. Varieties of embodiment of knowledge

For knowledge to be capital, it must be usable in production. Accordingly it must

be "stored up" in some sense, embodied, brought together in a form in which it w ill

be more or less handy, ready to use in a production process. There are a number of

ways in which this knowledge may be embodied.

As the language we use here is potentially misleading, let us take a moment to

clarify: Capital is embodied knowledge; yet it need not have any physical aspect:

16 But as Lachmann points out, "the question which matters is not which resources
are man-made, but which are man-used." (1978, p. 11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

the knowledge need not be embodied in any physical body. By embodiment we

mean a metaphorical embodiment. Knowledge becomes capital as it is sorted out

and "put away" somewhere where it w ill be ready to hand - available and ready to

be used - when production time comes along. By embodied, we mean

synthesized, localized, put in order, focused in a manner that w ill make it usable in

the anticipated production process. Wherever, or in whatever, the knowledge is

"put away," that is the thing in which it is embodied.

Knowledge may be embodied only in tacit form, in people's orientations. Standard

practices and rules of thumb fall into this category. It may also be embodied in

persons' minds and motor nervous systems. This is human capital - background

knowledge, familiarity, skills and experience.

Knowledge may be embodied in texts of some kind - symbols largely

unconstrained by physicality. In this category are procedures, software, recipes.

The medium to which the text is written is quite independent of the text itself. E.g.,

the maintenance procedure for a machine may be posted on the wall above the

machine, or kept in the minds and habits of the foreman and machine operators. A

favorite recipe can be written down, or kept in one's head. A computer program is

essentially the same whether typed on a computer's screen editor, printed out on

paper, compiled into executable form in the circuits of some particular computer, or

stored on a disk or tape. What is important is that it is embodied in some stable

medium, accessible to a number of people, so that it may be used.

And of course the knowledge may be embodied in materials, as in our examples

above of the plow, the hammer, and the computer program actually loaded into a

computer's circuits and running.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

4. Capital goods and division of knowledge across time and space

There is a distinctly social nature to capital goods, and the capital structure which

they compose (along with a host of supporting institutions and shared cultural

understandings). Most individual capital goods are manifestations of a far-flung

division of knowledge, an almost incomprehensibly extensive sharing of knowledge

and talent across time and space. The ever-changing pattern of the interactions of

these capital goods - the capital structure as a whole - is certainly beyond our

grasp. It is a part of what Hayek called "the extended order of human cooperation."

To pursue further this idea that capital goods and the capital structure manifest a

profound social interaction, let us consider Adam Smith's discussion of the division

of labor, to which he attributed the lion's share of human progress.

Recall Smith's case of improvement to the steam engine, which grew out of a small

boy's observation that he could tie a piece of string from the handle he was

assigned to operate to another part of the machine, and so get the action of the

machine to do his job for him. Subsequently this insight was built into the design of

steam engines. When, in cases such as this, knowledge is built into a piece of

capital equipment so thoroughly that an actual person is no longer required, what

has happened to the division of labor? Has it decreased? The little boy is no longer

at work at the steam-engine. Does his departure diminish the division of labor

present in that production process? Are there, in a sense, fewer people

contributing?

It appears that what Adam Smith meant by the division of labor was the division,

among a number of different people, of all the tasks in a particular production

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

process. Given a number of tasks which are visibly part of the production process,

the fewer the instances in which the same person carries out more than one of those

tasks, the greater the division of labor. This view is evident in Smith's remarks on

agriculture:

The nature of agriculture, indeed, does not admit of so many
subdivisions of labour, nor of so complete a separation of one business
from another, as manufactures. It is impossible to separate so entirely,
the business of the grazier from that of the corn-farmer, as the trade of
the carpenter is commonly separated from that of the smith. The spinner
is almost always a distinct person from the weaver; but the ploughman,
the harrower, the sower of the seed, and the reaper of the corn, are often
the same. (1976, pp. 9-10)

Here Smith focuses on division of labor among those directly involved in a

production process: how many laborers are involved at that time and place, given

the tools they have. We take issue with Smith, holding that the division of labor is

better understood as the whole pattern of cooperation in production, direct and

indirect. The indirect contributions are, in an advanced economy, the most

significant. As Carl Menger pointed out, the crucial "labor" is the creative effort of

learning how,17 and the embodying of that learning in a tool design that can be

used by others, who themselves lack the knowledge in any other form. We really

do better to speak of the division of knowledge rather than the division of labor.

Axel Leijonhufvud makes clear the importance of the division of knowledge in his

article, "Information Costs and the Division of Labor" (1989). He invites us to

consider a medieval serf, named Bodo, and asks "Why was he poor?" Leijonhufvud

17 (Menger 1981). For a discussion of Menger's criticism, see Vaughn (1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

argues, "Bodo was poor because few people co-operated with him in producing his

output and, similarly, few people co-operated in producing his real income, i.e. in

producing for his consumption" (p. 166). The cooperation need not be on the same

spot and at the same time to be relevant. Indeed, as an economy advances, the

pattern of cooperation spreads out spatially and in time.

Our rich twentieth century representative man, then, occupies a node in
a much larger network of co-operating individual agents than did poor
Bodo. His network, moreover, is of very much larger spatial extent. The
average distance from him of those who contribute to his consumption
or make use of his productive contribution is longer. Similarly, his
network also has greater temporal depth - the number of individuals
who i periods into the past made a contribution to his present
consumption is larger than in Bodo's case. (Leijonhufvud 1989, p. 166)

In his comments on the division of labor in agriculture, Smith neglects the division

of knowledge and of labor implicit in the tools the farmers use. The plough, the

harrow, and the scythe (or in our day the John Deere combine18), themselves

represent an extensive division of labor and, more importantly, of knowledge. To

be consistent with his suggestion in the quoted passage, Smith would have to assert

that there is less division of labor represented in the present day manufacture of

pins, in which (if I guess correctly) hundreds of thousands may be made in a day in

a fully mechanized process overseen by one technician at a computer terminal,

than in the factory of which he wrote. But the fact that there is now only one

person there on the spot does not mean there is no division of labor in pin-making.

It illustrates, rather, that the division of labor is now more subtle: it is manifested not

18 ...which reaps scores of acres in hours, while its driver sits in air-conditioned
comfort listening to W illie Nelson in stereo.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

in many workers, but in very sophisticated tools to which many creative workers

have contributed their special knowledge of the steps (what used to be the tasks)

involved in pin-making. Today's equivalent of Smith's division of labor is

manifested in a complex division of knowledge embedded in a deep pin-making

capital structure.

As Thomas Sowell has observed, "[T]he intellectual advantage of civilization ... is

not necessarily that each civilized man has more knowledge [than primitive

savages], but that he requires far less." (1980, p. 7, emphasis in original) Through

the embodiment of knowledge into an extending capital structure, each of us is able

to take advantage of the specialized knowledge of untold others who have

contributed to that structure. The structure becomes increasingly complex over

time, as the pattern of complementary relationships extends.19

In capital-intensive, modern production processes, the division of knowledge and

labor is to be found not in the large number of people at work in a particular

production process, but in the tools used by a very few people who carry out that

process. The knowledge contribution of multitudes is embodied in those tools,

which give remarkable productive powers to the individual workers on the spot.

The little boy is there in a modern steam engine, his knowledge embodied in the

valve-control rod. The farmer at his plough is empowered by the knowledge and

labor of hundreds of others, who designed his plough and hardened its steel, who

developed his tractor, who learned how to refine its fuel, etc.

19 Lachmann credits Hayek (1935) with "reinterpreting the extended time
dimension of capital as an increasing degree of complexity of the pattern of
complementarity displayed by the capital structure." (1975, p. 4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

The point is emphasized by Bohm-Bawerk, who in the following passage could be

responding to Smith's above comments on agriculture:

...the labor which produces the intermediate products... and the labor
which produces the desired consumption good from and with the help
of the intermediate products, contribute alike to the production of that
consumption good. The obtaining of wood results not only from the
labor of felling trees, but also from that of the smith who makes the axe,
of the carpenter who carves the haft, of the miner who digs the ore from
which the steel is derived, of the foundryman who smelts the ore. Our
modern system of specialized occupations does, of course, give the
intrinsically unified process of production the extrinsic appearance of a
heterogeneous mass of apparently independent units. But the theorist
who makes any pretensions to understanding the economic workings of
the production process in all its vital relationships must not be deceived
by appearances, his mind must restore the unity of the production
process which has had its true picture obscured by the division of labor.
(1959, II, p. 85)

What a difference there is between the meaning Bohm-Bawerk attaches to the

division of labor in this passage and the view suggested by Adam Smith in his

comments on agriculture. For Bohm-Bawerk, the division of labor is extended

down time and across space. The miner of the ore is "there," in a sense, as the

lumberjack fells trees with steel made from that ore. In an advancing economy, the

division of knowledge is an ever-widening system of cooperation in which are

developed new tools and processes whereby each person may take advantage of the

knowledge of an increasing number of his or her fellows. The division of

knowledge is manifested in the tools we work with, which embody the knowledge

of many.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

5. Capital structure

Capital exists and works within a structure. (Lachmann 1978, Hayek 1941) It is an

ever-evolving structure to be sure - it is never static - but at any time the

relationships among capital goods, and among capital goods and human capital, are

essential. Of the various perspectives we might take on the capital structure, three

will be important to us. One looks at the relationships of complementarity between

capital goods used jointly in a production process; another looks at relationships of

dependency between capital goods, one or more of which are used in producing

another; a third looks at the different categories of capital which are involved in

production processes.

5.1. Complementarity of the essence

We have said enough already of the importance of complementarity so that we

need not discuss the point at length. Let us merely reemphasize it. Lachmann says,

It is hard to imagine any capital resource which by itself, operated by
human labour but without the use of other capital resources, could turn
out any output at all. For most purposes capital goods have to be used
jointly. Complementarity is of the essence of capital use. But the
heterogeneous capital resources do not lend themselves to combination
in any arbitrary fashion. For any given number of them only certain
modes of complementarity are technically possible, and only a few of
these are economically significant, (p. 3, emphasis in original)

Programming languages run only on certain kinds of computers. A complex

programming environment such as the object-oriented system Smalltalk requires

further that the computer e equipped with a mouse, and a high-resolution display.

The various graphical user interface builders for Smalltalk run only where certain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

specific versions of Smalltalk are present. These are very powerful tools, but usable

only if the necessary complementary goods are present.

We w ill devote a whole chapter, Chapter 4, to the subject of capital maintenance.

In the present context it is important to point out that the challenge of capital

maintenance has fundamentally to do with complementarity. Capital exists and

functions in a structure in which complementarities are fundamentally important,

and the capital structure evolves over time as old tools and processes are

supplanted by new. Consequently, for any particular (kind of) capital good,

maintenance is very much a matter of maintaining its complementarity to the rest of

the changing capital structure. Hence maintenance may mean not only preventing

any change through deterioration, but actually changing that (kind of) good directly,

in a manner that adapts it to the changing capital structure around it, and thereby

delays obsolescence.

Because change is pervasive, how a particular (kind of) capital good is used will

inevitably change. As Hayek has pointed out, (1935) capital maintenance is often

more a matter of maintaining the value of capital than merely preventing decay.

But because value depends on position in a changing capital structure, maintaining

value may mean changing the good more than preserving it as is.

Software, of course, does not deteriorate. (A diskette may, but a diskette is

software's storage medium, not software itself.) Yet programmers speak of "bit rot,"

that creeping incompatibility that erodes software's usefulness as the environment

changes - with new computers, peripherals, operating systems, etc. - and the code

does not. This is purely a matter of complementarity. To maintain the value of a

piece of software, even when what it does stays exactly the same, requires changing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

that software to keep it complementary to the changing capital goods with which it

must work.

The point applies to capital goods generally. As tractors replace horses and oxen,

plows must be equipped with different attachments, and ganged two, three or more

abreast to take advantage of the greater power. As microwave ovens become

popular, some kinds of cookware must be made microwave-safe. There may be a

great deal of consistency in essential features of the designs: the geometry and

hardness of the plow blades, and the shape, weight, and appearance of the

cookware may remain the same. But if the plow and cookware makers are to stay

in business, if their products are to be valued and used in the newly-evolved

production processes, then they must be altered appropriately. To maintain the

value of different (kinds of) capital goods is to change them as necessary to maintain

their complementarity to the evolving capital structure in which they play a part.

5.2. Orders of capital goods

It is useful to think of capital in terms of orders of goods,20 consumer goods being

goods of the first order, and capital goods being goods of higher orders. As the

capital structure lengthens, we develop tools for producing tools for producing

tools... The better the tools at each stage, the better and more cheaply we may

produce the goods at the next lower stage. Menger stressed the importance of

lengthening the capital structure:

20 See Mises (1966, pp. 93-4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

Assume a people which extends its attention to goods of third, fourth,
and higher orders... If such a people progressively directs goods of ever
higher orders to the satisfaction of its needs, and especially if each step
in this direction is accompanied by an appropriate division of labor, we
shall doubtless observe that progress in welfare which Adam Smith was
disposed to attribute exclusively to the latter factor, (p. 73)

Improvements in tools (and related processes) of high order are very important to

economic development, because those improvements can be leveraged throughout

the production process.21

Frequently, there is a kind of recursion involved, in that developments at one stage

make possible developments at another stage, which can in turn improve processes

at the first stage. Better steel, for example - the product of a steel mill, makes

possible the construction of better steel mills. The availability of the language

Smalltalk made possible the user interface builder WindowBuilder, which is itself

an improvement to Smalltalk.

We w ill be interested in most of what follows with goods of fairly high order, in

particular, with in large part with tools for the design of tools. To clarify this point,

we need to consider the different categories of capital inputs to a production

process.

21 The very fact that there are orders of capital goods calls into question Romer's
assumption that new capital goods have an additively separable effect of output.
There is always dependency of lower order goods on the higher order goods that
produce them; hence treating these goods as separable in their effects is
nonsensical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

5.3. Categories of capital goods

What are the categories of capital goods at work in production processes? We will

distinguish first between fixed capital: "producer durables" such as tools and

machinery; and working capital: raw materials or intermediate goods, or goods in

process. Examples come readily to mind when we envision a production process.

In the steel mill the mill machinery is the fixed capital, the iron ingots and molten

metal are the working capital. In a bakery, the baker's oven and rolling pin are the

fixed capital, the flour and dough are the working capital. In a business context, we

might think of the word processor and spreadsheet program as the fixed capital, and

a company's raw data as working capital, to be processed by the spreadsheet into,

say, a meaningful report.

But this capital does not work by itself. In order to be productive, it must be put in

motion and directed by people according to some plan, in a set of procedures.

Accordingly, to our list of categories we add procedures. These three are

inextricably interrelated, because the procedures will be couched in terms of what

the tools do to the materials. You can't have procedures without the other two.

These procedures can be stored (embodied) in a variety of ways, e.g., in written

documents, in the "human capital" of a skilled worker's mind, muscles, or senses,

in machines which embody them (as a grain combine combines cutting and

threshing in sequence), and even in rituals.

An illuminating example of a procedure stored in a non-material fashion is that of

the ritual of sword-making in ancient Japan:

|T]he techniques that produce the special properties of steel... reach
their climax, for me, in the making of the Japanese sword, which has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

been going on in one way or another since AD 800. the making of the
sword, like all ancient metallurgy, is surrounded with ritual, and that is
for a clear reason. When you have not written language, when you have
nothing that can be called a chemical formula, then you must have a
precise ceremonial which fixes the sequence of operations so that they
are exact and memorable....

The temperature of the steel for this final moment [when it is plunged
into water to cool] has to be judged precisely, and in a civilisation in
which that is not done by measurement, "it is the practice to watch the
sword being heated until it glows to the colour of the morning sun."
(Bronowski 1973, pp. 131-33)

Some kinds of computer programs embody procedures, e.g. those that direct

automated assembly on an assembly line.

Fixed capital, working capital, and procedures - is that all? No. These three imply

some purpose, some end being aimed at. Our procedures for applying tools to raw

materials aim at producing something. This something must be conceived, more or

less fully. To put it another way, it must be more or less fully designed. So the

producers in a production process must have some implicit or explicit design to

inform the whole process. This design, this conceptualization or description of

what is aimed at, is what guides the procedures.

In this category are sketches and detailed blueprints and specifications, CAD

pictures in all the range of possible detail, vague mental pictures, detailed models,

software prototypes and completed code, and generally accepted definitions.

Examples are "steel rail," which design (probably in the form of a detailed

specification) informs the procedures of the steel mill, "loaf of bread," which

informs the procedures of the baker, and some notion of a report on profitability

projections, which informs the procedures of the business analyst.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

Thus we have four elements of production processes: 1) tools or fixed capital, 2)

raw or intermediate material, or working capital, 3) procedures for applying the

tools to the raw or intermediate goods, and 4) designs which inform the procedures.

6. Capital development as a social learning process

Consider the implied context of the above discussion. We spoke of production

processes, implicitly, of known production processes aimed at producing known

goods. The designs of which we spoke, which inform the procedures directing

fixed capital in processing working capital, are themselves implicitly known. But

this begs an important question: where do the designs come from? How are they

produced? What is the process by which they come to be?

It is important here to draw a clear distinction between producing designs for goods,

and producing individual instances, real cases, of those designs, because the

production processes are different. And, living as we do in a physical world, where

physical instances catch our eye, it is easy to overlook the production of designs,

and see only the production of instances. Economics, certainly, has overlooked the

production of designs, by and large assuming it away: standard models assume

"given technology" or use of the "best available technology." But for our purposes -

- investigating how the capital structure develops and improves - it is essential to

focus on production of designs as an activity different from the production of

particular goods embodying those designs.

Let us clarify the distinction by contrasting our common conceptions of producing

cars, on the one hand, and of producing software, on the other. When we think of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

GM producing cars, we think of their work creating new instances of extant designs.

True, GM employs many designers, who design new cars, but we don't think of

that; we think of the assembly line, spot welding, riveting, bolting, etc.: the hard

work of realizing these designs - imprinting the design on metal and rubber and

glass so that a new instance of the design - a new car - comes to be.

When we think of Microsoft's work producing software, by contrast, we think of

programmers writing code - creating new designs (or enhancing older designs).

True, Microsoft employs people who store the programs onto diskettes, thus in a

sense creating instances of the extant designs; but we don't think of that; we think of

the late nights at the terminal designing, coding, revising, running, debugging, etc.:

the hard work of creating new software - new designs, specific instances of which

will eventually be copied in mass onto diskettes and distributed.

The point here is not that design in unimportant in heavy industries such as

automobile manufacturing.22 Not at all. In fact, we hold that design is just as

important in such industries as in software. Indeed, by way of example, the design

process for the GM-10 line of cars at General Motors was allocated $7 billion and

five years. (Womack et. al. 1990, pp. 104-6) The point is that design of capital

goods and what we w ill call their instantiation - the creation of actual instances of

those designs - are fundamentally different from the analytic viewpoint. In practice

we cannot always separate the two, because design and instantiation frequently

occur simultaneously, but in principle they are different kinds of activities; they aim

22 Indeed, product design in manufacturing industries is receiving a lot of attention.
See Wheelwright and Clark (1992), and Womack et. al. (1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

at different goals. Design is concerned with the known, instantiation with the

unknown. Design is a matter of bringing together knowledge of how to accomplish

productive purposes that has not yet been brought together in that manner;

instantiation is a matter of imprinting a design onto a different medium. To design a

capital good is to work out fully what it should be, to instantiate such a capital good

is actually to bring it into physical being.

Because design is a process of bringing together and embodying productive

knowledge in a handy, ready-to-use form, design is a learning process. Because that

knowledge is of different kinds and widely dispersed among different people and

institutions, design is a social learning process - it depends on the interaction of a

number of people. Capital is embodied knowledge. The designing of capital, the

developing of the capital structure, is a social learning process whereby the

knowledge gets embodied in usable form.

What is the nature of this process? What makes it go forward better or worse? We

turn now to an examination of software development, in order to find some answers

to these questions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

A Short History of Software Development

Yet I doubt not through the ages one increasing purpose runs,
And the thoughts o f men are widened with the process o f the suns.

- Tennyson, Locksley Hall"

... it's taken us years to understand just how hard it is to build good
software. Developing robust, large-scale software systems that can
evolve to meet changing needs turns out to be one o f the most
demanding challenges in modern technology.

- David Taylor23

1. Introduction

The goal of the remainder of this work is to understand better the manner in which

the capital structure expands and improves. Our contention is that the most

important characteristic of capital for growth and development is the knowledge

embodied in the things we think of as capital. We study software because software

is a kind of capital good in which knowledge is peculiarly evident. Software is

almost pure knowledge. With software it is easy to see the distinction between

design and instantiation that is inherent is all goods. Designing software - bringing

together the relevant knowledge of how a computer may be programmed for some

purpose, and embodying this knowledge in code - is challenging. In this, software

is like other goods: designing effective capital goods is of any kind is challenging.

23 (1990, p. 2)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

In regard to instantiation, however, software is very different. Instantiating a

program - creating an instance or another copy of it - is utterly simple. It can be

done in microseconds, with a couple of keystrokes. It requires no factories, no steel

or glass or plastic. (Indeed, one of the obstacles to vigorous markets in software

capital, as we w ill see in Chapter 5, is the challenge of establishing and defending

property rights to goods that can be copied at virtually no cost.) Because with

software this crucial knowledge aspect is so distinct from the physical, by studying

software development we can focus on the knowledge aspects of capital and capital

development without distraction. By studying software development, then, we

hope to learn more about how the capital structure in general expands and

improves.

Because economists who read this work may be unfamiliar with software

development, at this point we devote a short chapter to orienting those readers with

a brief historical overview of software development processes and tools, and how

they have evolved. The chapter is essentially an introduction to the empirical part

of the dissertation for those unfamiliar with computer programming. It introduces

the main concepts that will, in subsequent chapters, be elaborated and related to

capital theory and issues of economic development.

We first consider the main forces that have driven the evolution of programming

practice. Foremost among these is the astonishing fall in prices of computer

processing power and memory, which has enabled ever larger and more ambitious

programming projects. Bringing these projects to fruition has not been easy. The

main challenge, which we take up next, has been managing the software's

complexity. Doing so is difficult, and a variety of tools and software development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

methodologies have been put into practice to try to meet this challenge; we take an

overview of these. We finish by introducing object-oriented programming systems

(OOPS) and related technologies, a relative newcomer to the field that seems to

hold real promise for enabling coordination in these complex capital structures.

2. Overview

As Lavoie, Baetjer, and Tulloh (1992) have pointed out, the evolution of

programming practice seems to have been driven by the steady drop in the price of

computational resources. As processing power, memory, and storage space have

dropped dramatically in price, people's software ambitions have grown apace.

Once programming was mainly resource-constrained: with processing power and

memory scarce and expensive, our programs were necessarily simple, and

programmers concentrated on making the most of the scarce machine resources.

After all, if a program was too big, it might not fit into the computer; if it was not

very cleverly executed, it would take prohibitively long to run. But the resource

constraint has been relaxed by the prodigious productivity of hardware

manufacturers. As a result, the programs we have tried to build have become more

and more ambitious and complex. We can afford - in respect to memory

requirements - to build big programs because memory is cheap. We can afford -

in respect to processing power - to demand a tremendous amount of computation

because our machines are so fast. In short, we can afford - in respect to physical

resources generally - very big, very complex programs. Accordingly, we try to

build such programs, sometimes with success, sometimes without. But building

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

larger programs necessitates coping with increasing complexity on a number of

areas.

One source of increased complexity arises from the very division of knowledge on

which major software projects depend. As the software industry has grown in size

and ambition, software development has of necessity become less and less a solitary

activity, and more and more a group endeavor, with many people contributing their

knowledge and talent to the development of a software system. Large projects

cannot be completed in reasonable time by a single person, especially where a

variety of specialized capabilities, each depending on quite extensive domain

knowledge, must be incorporated. Hence team programming. It is not unusual to

have several hundred programmers all working on the same project. The different

programmers are often separated both geographically and in time, as they work on

different parts of a large system in different locales and on different schedules.

Another source of greater complexity is the integration of various functions into one

software system. There was a time when each application stood more or less alone.

Now, however, we want our different software tools to "talk to" one another - we

want them to complement one another. A simple example is the integration of

word-processing, spreadsheet, and graphics capabilities: modern word-processors

import drawings, charts, and tabular data from other programs. A different kind of

integration is the "embedding" of software into physical machines. "Embedded

systems" direct machines, sensing and controlling, for example, movements of robot

arms, temperatures in ovens, and the flow of inventory through a manufacturing

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

Still another source of complexity is networking. Programs were once confined to

the computer that they ran on. Now, with improved telecommunications and

computer networking, computation has become very much a social process. It is

increasingly inapt to say that certain programs runs on "a computer." Frequently,

they run on several machines at once, their functionality extended across the

network, with many people interacting through them; such applications are known

as distributed applications. For example, automated teller systems interlink a host

of different automated teller machines at many different sites, serving many different

banks. In the new world of distributed applications, it is said that "the network is

the computer."

All this increased complexity is problematical. In short, as we have made great

progress in overcoming the resource constraint on programming, we have a

encountered a complexity constraint.

3. The Key Challenge: Managing Complexity

The primary constraint on programming today is not physical resources, but the

limits of our ability to manage complexity. As one software designer puts it, the key

limitation is "our sheer ability to understand what it is we are trying to do."24

As programs grow in magnitude and complexity, division of knowledge becomes a

necessity. (Lavoie, Baetjer, and Tulloh 1991a) There is a limit to how much code

one person can keep in mind and work with at one time, so the task must be split

24 Mark S. Miller, personal conversation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

up somehow. Merely to get a grasp on what is happening, we have to abstract from

the whole problem, decomposing it somehow into subsystems and subproblems (of

succeeding levels) which different people may work on, or the same person at

different times. This decomposition occurs in various ways, some of which we will

examine below. But one way or another, large programs must be split up into

different modules, in order to allow the programmers to focus on the different parts

of the problem. "This general strategy is known as modular programming, and it

forms the guiding principle behind most of the advances in software construction in

the past forty years." (Taylor 1990, p. 3) How the abstraction boundaries are drawn

is important. Appropriate abstractions provide order and understandability;

inappropriate abstractions cause problems.

A major problem is incompatibility among modules. Even when only one person is

working on a complex problem, it is easy to forget, or simply to misunderstand, the

effect that one module may have on another, and thus to build in unwanted (side)

effects - bugs. Much of debugging a program has been to this point a matter of

ironing out all these unintended interferences of one module with another. As we

w ill see, better-conceived ways of drawing abstraction boundaries can significantly

diminish this discoordination.

Of course large projects are often undertaken by large groups of people, with a

different person or team working on each module, and with a system architect or

system designer overseeing development at a high level. With this division of

knowledge not only among different modules but also among people, there arise

additional coordination problems. These have been explicated well by Fred Brooks

in his celebrated book, The Mythical Man-Month (1975). Brooks emphasizes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

importance of communication: the different team members must keep informed of

what assumptions being made by others, which will affect what they themselves are

working on. There can be great difficulty in maintaining effective communication

and clear understandings among the members of a team when the team grows

large: at some point the sheer cost of maintaining effective communication exceeds

the value of the additional manpower.

4. The Evolution of Programming Practice

In response to the challenge of managing the ever-increasing complexity of

software, the software industry has evolved a set of higher-order capital goods and

corresponding practices to help them build knowledge into software in an orderly,

effective way. These include new programming languages and a variety of tools

and processes. They continue to evolve rapidly.

4 ,1 Programming Languages

A primary aid to managing complexity is the development of higher-level

programming languages. Each new generation of languages gives programmers

increasing power to express complex relationships by capturing and expressing

higher-level abstractions. Each gives programmers more freedom from the concerns

of the computer itself - such minutia as what value is in what register - enabling

them to think more in terms of the problem they are trying to solve and less in terms

of how the computer operates to solve it. In the earliest days, on machines such as

ENIAC, "programmers" actually twisted dials and moved connector cables on the

machine. In place of this physical manipulation now there is machine language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

Up a level of abstraction from this is assembly language, still highly numerical,

concerned with the needs of the machine. Gradually, as one passes to higher and

higher level languages, the code becomes less oriented to the characteristics and

needs of the machine and more attuned to humans' characteristics and thought

processes. Accordingly, programmers using these languages can think in terms of

familiar words which represent aspects of the problem domain they are trying to

represent, unconcerned with the details of how a particular machine w ill store and

manipulate bits and bytes.

At the same time higher level languages provide better abstraction capability, they

provide more discipline - and hence understandability and coherence - to the

code. Somewhat paradoxically, languages which provide programmers great

freedom provide them with the rope to hang themselves. Programmers learned

early to write subroutines - sequences of instructions treated as separate units,

which can be called from anywhere in a program - to which they directed program

flow with GOTO statements. But the unrestricted use of GOTO statements leads to

"spaghetti code," in which the relationships among different modules are difficult or

impossible to perceive, making life difficult for anyone, including the original

programmer, who might come back to this code to work on it. There is a tradeoff,

in programming, between flexibility and manageability. Languages and techniques

which allow great virtuosity also allow code to be made incomprehensible.

Languages and techniques which limit also discipline, and thereby lead to more

understandability.

Structured programming languages respond to this tradeoff by providing

programmers a relatively small but comprehensive set of functions for directing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

program flow, so that the underlying structure of the program is much more clear

and understandable. But structured programming languages still share a common

pool of data. While the functions that the program performs are separated into

clearly-structured, separate routines, all the data that the program uses is centralized

and accessible to any of those routines. As a consequence, one routine too

frequently changes data structures in a manner not anticipated by other routines,

leading to nonsense - bugs.

A recent response to this difficulty (and others) is object-oriented languages.

Because these seem to constitute a fundamental change of approach, we w ill take

them up in some detail in the last section of this chapter.

4.2. Development methodologies

Along with programming languages have evolved various software development

methodologies. A methodology is set of procedures that a software development

organization follows (or tries to follow) in producing new software. Again, in the

early days, when computers were very limited and problems were relatively simple,

no extensive methodology was necessary. Good programmers could "hack" a

solution, working at the problem in an unstructured way until they solved it. But as

programs grew, this approach broke down. It became impossible to predict when a

program would be ready for use, whether or not it would work properly, and, if it

did work, whether or not it would be what the customer actually needed.

There grew up in response a move to discipline the software development process,

to make it more like other kinds of engineering in being based on sound,

established principles and "industry-standard" processes. Hence the term "software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

engineering." Whether because of the youth of the industry, or because of the

special nature of software, industry-standard processes, with resultant

standardization and predictability, have decidedly not emerged. The whole field of

software development methodology remains in ferment, with new methodologies

growing up amid high hopes, and then fading in disappointment. There is a

coevolution of software development tools to support the various methodologies,

which we consider below; and because the technologies, needs, and tools of the

industry are changing so rapidly, there is little stability or accepted wisdom.

Software development is difficult. As Fred Brooks wrote in the title of a celebrated

essay on the subject, there is "No Silver Bullet" with which to slay the problems and

make software development easy. (1987)

Nevertheless, attempts must be made, and they show some success. Traditional

methodologies generally consist of some variant of the "waterfall model," in which

development cascades from users' requirements to analysis to design to coding, to

testing, to debugging, to delivery. Such methodologies are a reaction from the

unstructured, experimental approach of the early days. Often they are associated

with special tools called CASE tools (see below), CASE standing for computer

assisted software engineering. These approaches are sometimes known as CASE

methodologies. In an attempt to bring the rigor of engineering to software

development, these methodologies aim to make clear at the outset exactly what the

user wants; this is the requirements stage. There follows an analysis of the problem

domain and the physical environment (e.g. computer types and network needs) in

which the software w ill run. Then there is a high level design of the system. The

analysis and design are frequently captured in complicated drawings of data flows

and entity relationships. Next the coding is done; frequently this is a matter of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

translating the elaborate design drawings into code. Then the code is tested and

debugged and finally, one hopes, delivered to a satisfied customer.

As we w ill see, these traditional methodologies have fallen short of what was

promised for them, often because they assume that requirements can be clearly

established at the outset of the development process. Because the knowledge

which must be built into software is dispersed and tacit, it is rare to get a clear,

complete statement of requirements, especially in recent years. In the early days of

electronic computation, computers were used mostly to automate well-known,

established processes. Hence the task of the software was reasonably clear. But as

programmers became more sophisticated, and as people gained experience in using

computers, they began to try to take advantage of computers in new ways, not just

doing the same old thing faster and cheaper, but doing something new, different,

and better. Requirements for such systems cannot be stated clearly at the outset,

because people do not know yet what they want. Only as they gain experience

with a developing design do they discover what they want and become able to

define the requirements.

Many methodologies, and many more software projects, have foundered on this fact

that requirements cannot be fully known at the outset. With painful regularity,

traditional methodologies have produced, at the cost of hundreds of thousands of

dollars and many man-years of effort, fully functional, complete systems which are

unusable because they do not do what the customer wants them to do.

Another difficulty with traditional methodologies is the loss of meaning and

understanding that frequently occurs in the translation from analysis to design and

from design to implementation. Often three different representations are involved:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

different kinds of drawings for analysis and design, and code for the

implementation. The challenge of maintaining consistency and understandability

between them is called "bridging the semantic gap"; frequently the gap is not

successfully bridged.

Still another problem with traditional methodologies is that in focusing on getting

the product completed correctly, they have failed to take adequate account of the

inevitability of maintenance.25 There appears to have been, in earlier days, a naive,

unexamined belief on the part of many that a software system could be finished,

made right, fully suited to the users' purposes. Once this was done, it was thought,

the job was finished. Graduajly software developers have become aware that no

system is ever finished, unless it is no longer being used. Many have found, to their

dismay, that up to 80% of their software development costs come in fixing and

adapting their product after delivery. Developers are always aiming at a moving

target, because users1 purposes and the computational environment are always

changing. (A fundamental element of this change, which still seems to be poorly

understood, is that in using the system, people learn better what can be done and

what they would like; ipso facto their purposes change.) Change is inherent in the

software world (as it is in the rest of the world, of course.)

New methodologies are being developed which come to grips with the lack of clear

requirements, the tacit, dispersed nature of knowledge, the importance of semantic

consistency among analyis, design, and implementation, and the inevitability of

25 Again, software maintenance, as the term is generally used, is not a matter of
preventing physical deterioration, but of fixing bugs as they appear, and maintaining
complementarity with the surrounding environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

maintenance. Some of these take advantage of object-oriented technologiesf which

we introduce below. These approaches generally involve some form of prototyping

in the early stages. Prototypes are used as a vehicle through with the designers and

users of the new software can come to understand their respective capabilities and

needs, thereby establishing system requirements. Because object-oriented

programming environments are flexible and pre-supplied with components that can

be tailored to new purposes, they enable rapid prototyping, in which a prototype

can be quickly evolved through several iterations in a kind of dialogue between

designers and users.

Object-oriented technologies are also designed to bridge the semantic gap by

allowing the entire development process, from analysis through coding, to use the

same terminology. Those who w ill use the system as well as the designers and the

programmers who do the nitty-gritty implementation may think about the problem

being addressed in terms of the elements of the system and their interactions: these

are represented in the evolving software as objects and their methods. Instead of

having to translate from design diagrams in one notation to code in another, object-

oriented programmers doing detailed implementation fill in the details of the

interactions of the objects developed in analysis and design. A related advantage of

using the same kind of notation throughout is that analysis, design, and

implementation can all be occurring simultaneously (as is often necessary as

requirements evolve).

Proponents of object-oriented techniques claim that they also improve the

maintainability of software systems, because their modular structure is

understandable, and allows changes to be localized. Object-oriented systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

generally avoid the problems of "spaghetti code" in which one small change made

here necessitates corresponding changes all over the system.

4.3. Tools

It is difficult to discuss methodologies without considering development tools at the

same time, because the two are highly complementary, and often designed to be so.

Of course there has been extensive evolution of programmers tools, aimed at

helping with virtually all the aspects of software development. Among these are of

course programming languages, which we have mentioned. Also there is an

increasing number of programming environments, which provide a suite of tools in

addition to the language proper. Some of these tools include

• Debuggers - these help programmers find and fix mistakes on the screen. (In

the early days, one had to get a printout of the program and look through the

code by hand to find the error.)

• Compilers - these translate the more abstract code written in higher-level

languages into machine code (binary or executable code) that the computer can

run. Good compilers are remarkable in their ability to make tradeoffs leading to

efficient use of machine resources.

• Diagramming tools - these are an important kind of CASE tool. They automate

the process of drawing the extensive diagrams often used in traditional analysis

and design. While they are not much faster than drawing by hand initially, they

have the advantage of speeding up (the inevitable) changes considerably.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

• Code generators - these translate from a higher level specification of some kind,

for example certain highly structured kinds of design diagrams or screen layouts,

to code. They are especially useful for creating the code necessary for creating

user interfaces and reports. More capable and accurate code generators is one

of the most sought after, and elusive, goals of CASE.

• Version control tools - these have been developed in response to the challenge

of coordinating the work of large teams of programmers. They keep track of the

different versions of different modules, facilitating team development, and

helping integrate changes. For example, if module A is used by modules B and

C, but then module A must be changed for some reason, a good version control

tool w ill alert programmers to the dependencies so that they can adjust B and C,

if necessary, to restore compatibility.

• Browsers - these are relevant primarily to object-oriented languages, which

make use of structured hierarchies of abstract data structures called classes.

Class hierarchy browsers allow programmers to look through the hierarchy

easily, browsing for classes that may be useful to them. In general, browsers

allow programmers to examine different aspects of programs and systems from a

variety of different viewpoints. These different viewpoints give them a better

grasp of different aspects of the complex systems they are building.

4.4. "Automatic Programming” and augmentation of human creativity

To what extent can the process of software development be automated? Computers

can do so much, can they produce software? How necessary are people to the

software production process? These questions concern the potential of automatic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

programming and the more general subject of automated support for software

engineering. Some have held that software production can be automated, and point

to developments which they claim to prove their case. There is a fair amount of

attention given today to automatic code generators, which automatically produce

executable code from diagrams or other visual representations of program concepts.

Some CASE tool builders provide this kind of capability, at least in limited fashion.

Another school of thought holds that automatic programming is a chimera, that only

people write programs, and that the idea of automatic programming is

fundamentally mistaken. There is a great deal that computers cannot do in

producing software; they can do none of the interesting, hard problems.

These positions, though ostensibly in conflict, are reconcilable when couched in a

different way. As we w ill see in the next chapter, the meaning of automatic

programming has evolved in a revealing way. For now it suffices to say that while

some kinds of activities can be automated, others appear to be impossible to

automate. But unquestionably computer tools can help people in their tasks, by

augmenting human capabilities. (Englebart 1963)

The dispute about the potential for automatic programming, and its de facto

resolution in the nature of the new tools and processes being developed, point up

an important aspect of the evolution of programming practice. That is, software

engineers are gradually discovering and accepting that software development is an

on-going process and must be treated as such. In general terms familiar to

economists, the capital structure is not static; therefore capital goods, to maintain

their value - their position of usefulness in the evolving capital structure - must

evolve. Because the software industry has learned that change is inevitable, both in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

the initial development period and after products are put to use, many of the most

useful languages, tools and methodologies now being developed are those that help

software developers manage change. Of these, perhaps the most important are the

object-oriented technologies. We finish this chapter with a short introduction of

these.

5. Object-Oriented Technologies

Object-oriented programming systems (generally known by the disarming acronym

OOPS) have their origins in the programming language Simula, which was designed

to enable the construction of computer simulations. The units of interest in Simula

are the objects in the system being simulated. What made Simula different from

previous languages is that the modules from which its programs were built were

composed not of functional units only, like traditional subroutines, but

combinations of functions and related data. From this idea, object-oriented

technologies were borne.

An object, then, is a bundle of data and related functionality. The concept is natural

one, applicable to modeling natural systems. Consider an airplane, for example.

This is an object defined by certain data, including its cruising speed, carrying

capacity, age, location, etc. as well as by the functions that it can carry out, such as

taking off, cruising, landing, and taxiing. In the pure object-oriented systems such

as Smalltalk and Eiffel,26 everything in the system is an object; the approach is

26 There are also hybrid systems such as the popular C+ +, which has some of the
features of object-orientation and lacks others. Most of this discussion pertains to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

consistently applied. Let us consider some of the key concepts of object-oriented

programming.

5.1. Encapsulation

One of the most important characteristics of object-oriented programming systems is

that they achieve a higher degree of modularity than previous styles of

programming.27 This is because of what is known as the encapsulation of data and

function. Recall that in older languages, while a certain degree of modularity is

possible through the use of subroutines, there is still a significant chance for

interference between modules because these modules generally share a common

pool of data. The result is programming's version of the tragedy of the commons:

one module often changes the data or its format is such a way as to confuse or make

meaningless another module's use of that same data.

In object-oriented languages, by contrast, each object's data is encapsulated along

with its own methods, and care is taken not to allow other objects to interfere with

that data. Consider a possible software object airplane perhaps representing a real

airpland in a navigation system. Its data might include airspeed, and heading; its

methods might include accelerate, decelerate, tu rn jigh t, and turn-left. In a

properly encapsulated object-oriented system, only the airplane object itself has

the pure object-oriented languages, and especially Smalltalk, with which I am most
familiar.

27 At least they can achieve it. It is perfectly possible to write spaghetti code in an
object-oriented language, just as it is possible to write elegantly modular code in a
traditional language. It is simply harder in each case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

access to its airspeed and heading data, and they can be changed only by the

airplane’s invoking one of its methods. It is not possible for some other object in

the system to change that data, by accident or error, as would be the case, say, if the

airspeed and locations of all the airplanes in the system were stored in a common,

generally accessible table.

Object-oriented languages thus provide programming some of the benefits that

property rights provide economies. Indeed, Mark Miller and Eric Drexler hold that

the development of object-oriented programming constitutes an independent

rediscovery by programmers of the virtues of property rights.28 Just as property

rights secure to economic agents a sphere of autonomy, and a confidence that the

possessions for which they make plans will not be interfered with arbitrarily from

the outside, encapsulation provides software objects an autonomy and security that

the data they depend on w ill not be interfered with. The upshot is similar in both

settings: just as property rights foster coordination in the economy*, encapsulation

fosters coordination in software systems.

JL2* M ess.age.£assiog

In object-oriented programming, this encapsulation is supported by a means of

inter-module communication called message passing. Objects do not directly

change other objects; they "send them messages" to one another requesting

services. Each method (be alert here to distinguish the distinct, but closely related

concepts of method and message) that an object "knows how" to carry out can be

28 See Miller and Drexler (1988) for a provocative discussion of this idea.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

triggered by that object's receiving a corresponding message. If the object

"understands" the message - that is, if it has a corresponding method in its

repertoire of functionality - it performs that method. (If not, it triggers an error

message in the system and the programmer gets to do some debugging.) In no

other way can one object in a system interact with another. Again, this expedient

serves an important security function: one part of a program simply cannot interfere

with data encapsulated in another. It has no means for doing so. All it can do is

send an appropriate message asking for, say, some part of that data or that an

operation be performed on it.

iUL Polymorphism

One of object-oriented technology's most powerful means of helping programmers

manage complexity is polymorphism. This is a daunting name for an entirely

familiar concept from everyday life. Polymorphism is the assignment of the same

name to different but related actions (methods, in Smalltalk terminology.) If, for

example, I were to ask you to shut the window, and then ask you to shut the door,

you would not be confused. You would interpret "shut" in two different, though

related ways appropriate to the two different contexts. Windows are shut with a

different set of actions that doors are shut. In like manner, object-oriented

programming languages interpret the same method name in different manners

appropriate to the context, that is, appropriate to what kind of object is involved.

That is polymorphism.

As simple as it sounds, it has been tremendously empowering to programmers. No

longer do they need to compose different names for each slightly different action in

slightly different context. They use the same appropriate term in all contexts, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

implement the methods appropriately differently for each kind of object. With

polymorphism, programmers can address the great complexity of dealing with many

slightly different kinds of objects by the simplifying power of abstraction, as we do

in everyday life with our various different meanings for "shut" (shut off the TV; shut

the book; shut up). Polymorphism lets us avoid addressing complexity with

complicatedness, as in programming languages which would require a different

kind of "shut" for each context (e.g. shut_window, shut_door, shut_tv,

shutjnouth...).

5.4. Information Hiding

Polymorphism and message passing make possible information hiding, another

important characteristic of object-oriented technology that serves to simplify the

programmer's job. Information hiding has not to do with secrecy, as it might sound,

but with fostering the division of knowledge by making it unnecessary for

programmers or objects to have much information about the other objects with

which they interact. They key point is that all a programmer or object needs to

know about another object is what useful services it can provide, and what

messages it must be sent to trigger those services. It is not necessary to know

anything about how the object actually does what it does.

The analog to everyday life is strong. When we deal with an accountant, for

example, we might ask her (send her the message) to figure out our tax liability on a

certain transaction. All we need to know is what message to send her to get her to

perform the desired service. We do not know, nor do we want to know, exactly

how she does it. That would defeat the whole purpose of the division of labor. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

would distract us with unnecessary knowledge, and might lead us to give the

accountant unwanted advice as to how to do her job.

There is another benefit. That is the interchangeability of implementation. When a

programmer works out an improved method for some kind of object, he can simply

pull out the old implementation and put in the new. As long as the message that

triggers it remains the same, no one else need know, and no other kinds of objects

need be changed; changes in one module necessitate corresponding changes in

other modules far less frequently in object-oriented programming than in

conventional programming. Hence information hiding is an important enabler of

software evolvability.

5.5. Classes and inheritance

In object-oriented programming, every particular object in any actual program or

system is an object of a particular kind or class. As such, it is called an instance of

that class. Classes themselves are an important kind of abstraction, called abstract

data type. There can be thousands of instances of a certain class, or none. Class is

the abstraction, the kind of object. Here is another valuable abstraction

mechanism. With the help of classes, which abstract from the particular

characteristics of particular objects to comprehend what those kinds of objects all

share, programmers have another means of getting a grip on complexity.

Furthermore, these classes are organized in inheritance hierarchies, which help

make clear what kinds of things they are, and allow the sharing of characteristics.

David Taylor explains classes and inheritance as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

Inheritance is a mechanism whereby one class of objects can be defined
as a special case of a more general class, automatically including the
methods ... of the general class. Special cases of a class are known as
subclasses of that class; the more general class, in turn, is known as the
superclass of its special cases. In addition to the methods... they inherit,
subclasses may define their own methods and ... may override any of the
inherited characteristics. (1990, p. 22)

For example, we might have the general class of objects vehicle, with subclass

fourWheeledVehide, which in turn has subclasses car and truck. Classes car and

truck would inherit all the methods of fourWheeledVehide and vehicle, but each

could specialize any of these methods as appropriate, and add additional methods

as needed.

In David Taylor's words,

The invention of the class hierarchy is the true genius of object-oriented
technology. Human knowledge is structured in just this manner, relying
on generic concepts and their refinement into increasingly specialized
cases. Object-oriented technology uses the same conceptual
mechanisms we employ in everyday life to build complex yet
understandable software systems. (1990, p. 24)

6. Summary

Dramatic improvements in computer hardware have relaxed the resource

constraints that shaped programming practice in the early days. Relatively freed

from resource constraints and increasingly ambitious in undertaking large, complex

problems, software developers found themselves confronting a daunting complexity

constraint - how to manage the complexity of the systems they were trying to build.

In response to this challenge, a variety of tools and development methodologies

have evolved to enable better abstraction capability, more modularity of system

Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

design, and better conceptual grasp of the evolving systems. The recent

development of object-oriented technology has provided substantial advances in

programmers ability to manage complexity with effective modularity and

abstraction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Designing new capital: lessons from software development

Oh, I see the crescent promise o f my spirit hath not set.
Ancient founts o f inspiration well through all m y fancy yet.

- Tennyson, "Locksley Hall"

In speaking with each other we constantly pass over into the
thought world o f the other person; we engage him, and he engages
us. So we adapt ourselves to each other in a preliminary way until
the game o f giving and taking - the real dialogue - begins.

- Hans-Georg Gadamer29

1. Introduction

In this chapter we look at the process of new software development, its problems,

practices, and historical developments, to see what it may teach us about the nature

of new capital development.30 We will see new software development to be a

social learning process, and identify important aspects of that process. In an effort

to get a good grasp on the software development process as a whole, we w ill take

29 (1975, p. 57)

30 We need to keep in mind that virtually all capital goods are used jointly. Hence
we w ill try to think about individual capital goods in terms of the contexts in which
they are used, and think of software applications as systems of sub-programs that
interact extensively with one another. Most software constitutes not so much a
single tool as a system of tools (consider a word-processor, for example: it has many
modules including its text editor, printer drivers, spelling checker, search and
replace facilities, etc.).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

two different perspectives on it. We focus first on its social aspect - its necessarily

interpersonal nature - through an examination of evolving software development

practice. Then we focus on its being a learning process - one in which knowledge

grows, becomes coherent and embodied in a usable form - through examining the

evolving high-order goods used in the process - the tools software engineers have

developed to help them in their work. In the next chapter we w ill go on to consider

the challenge of software maintenance, focusing on software development's being

an on-going, never-completed process that occurs through time. Inevitably we w ill

cover some of the same ground more than once from different angles. I hold this to

be a strength of the method rather than a drawback, however, because the software

development process, like a software system itself, is a complex system beyond our

complete understanding, but which we can understand better and better by taking a

variety of different views into it.

2. Discovery in the design process: why prototyping

Software development, like all capital goods development, is a social, not a solitary

process. Many people are involved, because many people must contribute their

own special knowledge to the evolving system. The nature of this social

interaction, through which many people's different knowledge is brought together

and embodied in new capital goods, is not straightforward. In particular, it is not a

matter of saying to each, "Tell me what you know that's relevant," and

incorporating that in a straightforward translation of some kind. Frequently we do

not know what knowledge is relevant, nor could we express it clearly if we did.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

And yet much traditional software methodology has proceeded on the assumption

that we do and can.

An alternative approach which is growing up and gaining acceptance is the use of

various techniques aiming to discover what knowledge is relevant - what needs and

opportunities this tool may address - and to express that in usable form: embodied

in the evolving design of the new system. Important among these techniques is

prototyping. The prototyping process constitutes a kind of dialogue in which all the

various people participate whose knowledge must be embodied in the new

capital.31 The medium for the dialogue is the prototype itself - the emerging

design. In a useful sense it is the prototype, the new design, that learns, rather than

the human participants, because it is in the prototype alone that all the relevant

knowledge may be found in useful form.

2.1. Divided knowledge in software development

Mark Mullin begins his 1990 book, Rapid Prototyping for Object-Oriented Systems

with this loose definition of rapid prototyping:

This book deals with the concept of rapid prototyping, a process where
specifications for a piece of software are developed by interaction
between a software developer, a client, and a prototype program. Rapid
prototyping is used when a client cannot initially define the

31 Joint application design (JAD) and rapid application development (RAD) are
related approaches. Joint application design stresses bringing together all the
people who should make a contribution to the design; Rapid application
development involves a combination of joint application design sessions, CASE
tools, and prototyping. For our purposes, what is crucial to all these is the
interactive learning at which they aim.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

requirements for a piece of software to a degree necessary to satisfy
more traditional design methodologies, such as those defined by Edward
Yourdon and Michael Jackson, (p. xi)

There is a sharp distinction between the prototyping approach and traditional

methodologies in respect to the assumptions made about knowledge in the software

development process - who knows what, when, and in what manner. Traditional

methodologies implicitly view the relevant knowledge as articulable and static.

M.F. Smith points to three assumptions these methodologies share:

The first assumption is that all the requirements and needs of
applications can be analysed and understood adequately by the users
and software developers before development begins.... There is also an
assumption ... that software needs and requirements w ill be stable....
Finally, there is an assumption ... that users understand fully the
technical documentation presented to them. (1991, p. 4)

The prototyping approach, by contrast, recognizes that the necessary knowledge is

far more elusive, changing, and difficult to communicate. Perhaps most

importantly, the clients, for whom the software tool is being designed, do not know

what they want, or at least they are unable to say what that is. Much of the users'

knowledge, like much knowledge in general, is tacit, inarticulate. (Polanyi 1964)

Accordingly the most fundamental kind of knowledge necessary to the tool-building

process - what the tool is to do - is not readily accessible at the outset. As Mullin

puts it,

Unfortunately, clients rarely have this complete a grasp on their
problem; they usually assume their responsibilities are simpler, namely,
they:
• Recognize that a problem exists
• Find an expert to solve the problem (1990, p. xi)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

Just what the problem is, nobody is clear about. But if the clients cannot say what

sort of tool they want built, how are the tool builders to find out? Prototyping

provides a means.

Prototyping is an iterative process that accommodates adjustment and change; it

anticipates instability of requirements:

Requirements and software actually evolve together throughout the
lifecycle of the project.... In the iterative approach to software
development, users "stay in the loop," refining their requirements as they
better understand what application features are possible... (Adams
1992b, p. 7)

The prototype itself serves as a valuable communication medium through which

designers and users can reach reasonable confidence that they really understand

one another. Because the process is iterative, it allows for more frequent, regular

interaction. Because the prototype is a version of the evolving tool, the dialogue

has a clear, mutually understandable focus. Instead of having to make sense of a

lengthy requirements document and figure out if that written description really

captures what they want (or think they want), users can interact directly with the

prototype and experience whether or not it meets or fails to meet their needs.

It is perhaps understandable that traditional methodologies should assume well-

understood, fixed requirements: the computer field is very young, and many early

programs were essentially electronic replications of existing manual systems such as.

inventory management and accounts payable. In these kinds of cases, the

knowledge of what the tool must do is mostly available. The users know pretty well

what they want and express it reasonably clearly. The software designers have the

added help of being able to look at what is being done on paper. In such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

circumstances, it was not so necessary for developers and users to carry on a

dialogue through which they could come to understand one another.

But the old methodologies are severely strained under present conditions. Today,

Software developers are no longer confronting situations where they are
reproducing manual systems. Now they are expected to replace a chunk
of the client's middle management with an expert system, one that uses
all of the system's existing data to decide such things as when to reorder,
how much to reorder, what bills to pay, and what customers are good
credit risks.

...[The designer may sometimes] be lucky enough to get a clear
definition of the problem and be able to see an immediate solution. ...
More often, a client w ill say something like, "Gee, this system has
completely changed the way we do business. And now we have all of
these great ideas about how we can get the system to do even more for
us." Unfortunately they can't give you a lot of detail about these new
ideas. After all, that's why they hired you. (Mullin 1990, pp. 2-3)

A new software system's requirements cannot be fully known, and hence the

software's capabilities cannot be fully specified, at the project's inception. In this

lies the problem with traditional methodologies based on the classical "waterfall"

model, in which design begins after the software requirements are (supposedly)

fully specified and analyzed.

mhe conventional 'waterfall' methodology practiced in most large
companies today ... requires the creation and approval of numerous
detailed documents before the first procedure is ever written ... [and]
doesn't allow any modifications once the actual programming has
begun. This constraint frustrates [client] managers to no end because
they rarely know what they really want until they see it running on a
screen, at which point it's too late to make any changes! (Taylor 1990, p.
97)

The difficulty of this approach is illustrated in the experience of one developer

working on a project that was to provide "the usual project deliverables of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

requirements specification, functional specification and design specification which

cover the specification phase of a development project." They found that

[t]he functional specification standard ... was too inflexible for the needs
of the GUI [the graphical user interface they were building]. Other
techniques such as formal specification were inappropriate considering
the time constraints.

Thus a more pragmatic approach was accepted - that of prototyping.
(Barn 1992, p. 25.)

The point of rapid prototyping is to establish the requirements, to find out what the

tool must do. "Your job as a rapid prototyper" says Mullin, "is to work with the

client to extract specifications for their new software." Early in the process, your

focus "is simply on defining why this software is being written in the first place,

which w ill tell you what is expected of it." (1990, pp. 214-215)

Among certain members of the mainstream CASE community, the significant and

on-going challenge of establishing what software systems are to do is now being

recognized. In "A Self-Assessment by the Software Engineering Community,"

summarizing the findings of the International Workshop on Computer-Aided

Software Engineering, Gene Forte and Ronald Norman write that "Prevention [of

defects] begins with better ways to capture, represent, and validate the objectives

and requirements of systems we are trying to build..." "There is still much work to

be done in defining generic [software development] processes..," they say. "Areas

that are particularly weak in process definition [include] requirements elicitation..."

(1992, p. 29)

Requirements elicitation is a basic purpose of rapid prototyping, which takes a

wholly different approach to software development from that of traditional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

methodologies. Simply put, rapid prototyping works as follows: After an initial

meeting between client and developer, the developer produces a very simple

prototype which the client can try out on the computer. Then follows a repeated

sequence of the following steps:

• the clients try out the current version of the prototype and react to it. They

explain as well as they can what they like and don't like. Equally important, the

developers observe what they do and don't do, what they try, what they ignore,

where they are frustrated, and where they are pleased.

• informed with this new knowledge, the developer improves and extends the

prototype, and offers this new version to the client for trial.

The cycle continues in a kind of dialogue - a conversation in which the prototype

itself is passed back and forth, as much as any words about it - until the prototype

has been refined to where it contains the functionality the client needs. At that

point the initial version of the software to be delivered is defined, and the

developers' emphasis turns to details of implementation.

We emphasize that this transition is a change in emphasis, rather than a switch from

one set of activities to a distinctly different set. Analysis, design, and

implementation are all really occurring together throughout the software

development process. But developers need to avoid naive prototyping. If an actual

product is actually to be shipped on a reasonable budget, developers must avoid

what is known as the "creeping feature" problem, in which more and more

functionality is always being planned in, so that the product is never finished. On

the other extreme, developers must resist the temptation to ship the prototype.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

Sometimes clients are so please with a prototype, that they say, "We'll take it,"

before important issues of robustness and efficient implementation are addressed.

Sometimes the product to be delivered is implemented in a language different from

the prototyping language. In such cases there is more of a difference between

prototyping and implementation than in cases where the delivered product is a fully

worked out descendant of the last prototype. Even in these latter cases, however, in

which there can be an almost seamless transition from prototype to implementation,

it is important for the developers to distinguish clearly between the different goals of

prototyping and implementation. Otherwise they can fall prey to feature creep,

slipped deadlines, and broken budgets.

The growth of prototyping in software development is a tacit recognition in the

software industry that knowledge is more tacit and more dispersed than has

previously been recognized. The shift from the traditional, "waterfall" type

methodologies to methodologies that depend on prototyping seems to represent a

shift in view of software development. It is coming to be seen less and less as a

matter of manipulating static knowledge and more and more a matter of dynamic

learning.

Capital development appears to be fundamentally a matter of dynamic learning.

Because the knowledge that must be embodied in new capital goods is constantly

being developed, widely dispersed, incomplete, and frequently tacit, a learning

process which elicits and brings together this knowledge is essential. The point

applies not just to software, but to capital goods in general. In manufacturing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

industries in particular, there has been recent work emphasizing the importance of

the "prototype/test cycle" and effective team learning.32

2.2. Knowledge of function, knowledge of design, knowledge of implementation

At this point let us step back and look at the software development process from a

broad perspective. There seem to be three general stages to the process, which

correspond directly to the broad categories of knowledge about tools discussed in

Chapter 1: knowledge of function, of design, and of implementation.:33

1. Establishing the requirements. What is the software to do? What is this tool

supposed to be able to accomplish? This knowledge of function comes

primarily from the tool user.

2. Design. What sort of tool may be fashioned so as to provide the desired

functionality? What sort of design would best meet the users' requirements?

This knowledge of design comes primarily from the designer, the specialist

tool-maker.

3. Implementation. This is the actual instantiation of the design, the coding

process. How, precisely, is this design realized? How may the details of

32 See in particular Womack et. al. (1990) and Wheelwright and Clark (1992). We
will take up the application of these insights to physical capital goods in Chapter 6.

33 These cannot be sharply partitioned, either in time or in the nature of the
development activity. "Final implementation," for instance, nearly always involves
elements of design, as the programmer figures out the best way to implement a
particular algorithm; and "design" encompasses many high-level implementation
decisions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

construction be arranged so as to achieve good performance in speed and

efficient use of machine resources? This knowledge of implementation comes

primarily from the skilled programmer.

Prototyping is a valuable part of software development because these kinds of

knowledge are dispersed and latent. They reside in different individuals who may

not know one another and may have trouble communicating. Furthermore, the

individuals may not be consciously aware of their knowledge, which needs to be

brought out in application to the problem at hand. The dialogical process of

prototyping serves to trigger the re-discovery or creation of useful knowledge on the

part of the participants. The users' reactions stimulate the design knowledge of the

designer, and the functionality offered in successive versions of the prototype

stimulates the users' knowledge of function, helping them become more clear as to

what the tool needs to do. Furthermore, the prototype itself provides the medium in

which these different kinds of knowledge may be captured.

Knowledge of implementation, finally, often resides in still others, the actual coders.

Once the clients accept the prototype as offering what they need, the designer often

turns over the implementation job to programmers who specialize in efficiency of

implementation: they construct the design to run with the best possible balance of

high speed and low memory use on the computers for which it is intended.34

34 As we shall see, the kinds of knowledge involved in design and in
implementation are not independent, because designers must know what it is
possible to implement, and implementors essentially design the details of their
implementation. Nevertheless, these two types of knowledge are conceptually
distinct and may not be concentrated in the same person.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

The nature of prototyping brings out not only that the necessary knowledge is

dispersed, but also that it is frequently tacit. Prototyping advocates stress that

clients cannot say what they want. Even when they seem to know at some level,

often they cannot express it. The prototyper must discover this by showing them

different capabilities and carefully attending to their responses. Much of the

designers' knowledge is tacit as well. They cannot say precisely what makes good

design, nor why they take some steps rather than others. Indeed, the various books

on prototyping are attempts to make more explicit some of the tacit knowledge that

software designers themselves have developed over the years.

In addition to being dispersed and tacit, the knowledge valuable to a software

development project is generally incomplete. It accumulates continually over time.

This is why prototyping must be iterative. Every time designers listen to feedback

from their clients, their knowledge of the clients' wants increases, and every time

the clients interact with a prototype, their knowledge of the software's potential

increases. In this manner grows the knowledge necessary to building a software

tool.

2.3. Software development as interactive learning

In short, the software development process exemplifies the classic Hayekian

knowledge problem: the different kinds of knowledge to be coordinated are

dispersed, tacit, incomplete. This being the case, the development of new software

capital is a discovery procedure, an interactive learning process. Through this

process, the dispersed knowledge is brought together in the new software tool. The

knowledge gets built into, coalesces in, becomes embodied in, the software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

Thus in an important sense, it is actually the tool itself - the new software - that

"learns." The client never learns what the designer knows of modularity and

information hiding; the designer never fully understands the client's management

style, to which he is tailoring the system; the programmers never learn why the

screens must look like this instead of like that. The only "place" in which all the

relevant knowledge truly resides is the software itself.35

On this view, the development of new capital goods can be seen as a prime

instance of the social cooperation of the market process. Just as the farmer, miller

and baker cooperate in producing bread for others to consume, so the client,

designer, and programmer cooperate in producing new software tools for the client

(and others) to use in further production. The knowledge inputs of all are

necessary, and the only "place" where they exist together is in the bread or the

software. Anyone who eats the bread or uses the software thereby takes advantage

of the knowledge contributions of all those who have participated in its production.

The learning process of software development is non-deterministic and

evolutionary; it cannot be automated, and it defies capture in a formal

methodology. Traditional approaches to software development seem to make the

same kind of assumption that is made in many neo-classical economic models: that

all the relevant knowledge is available, and that therefore what remains is

mechanically to work out its consequences, optimizing within given constraints. In

35 For an intriguing explication of the complex interdependencies of our
knowledge, and the degree to which we unknowingly draw on a tremendous
amount of shared knowledge and understanding, in our routine activities, see Phil
Salin's article on "The Wealth of Kitchens." (1990)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

this error we can see both why the traditional approaches to software engineering

have led to cost overruns and frustrations for clients and developers, and why neo

classical economics is inadequate for illuminating the software development

process. As Mullin says,

I have stressed that modern software development often has little
resemblance to the formal development process taught in schools and
industry accepted texts. Instead, it's much more of a hit-or-miss affair,
with everyone stumbling around in the dark, hoping that they w ill trip
over the correct solution to the problems confronting them. This arises
primarily from the fact that software development is innately a human
process, as opposed to the mechanistic process many claim it to be. If
such an argument were true there wouldn't be much need for
programmers, as our current technology is well suited for automating
mechanical tasks. When the task requires creativity and insight, our
technology is of little use. (1990, p. 136)

Mullin overstates here. It is not that our technology is of little use, but that we must

use it differently when we are learning than when we are mechanically applying

what we have learned.

Let us look more closely at the nature of this learning process as illustrated by rapid

prototyping. Inevitably the process is interactive, because the relevant knowledge

of function and design are dispersed and must be brought together.

Interaction between user and designer

In a discussion of a product they built for Hewlett-Packard, Bob Whitefield and Ken

Auer of Knowledge Systems Corp. bring out the inescapable necessity of interaction

between client and designer. The product is called the Hierarchical Process

Modeling System (HPMS); it provides computer automation for Hierarchical Process

Modeling (HPM), Hewlett-Packard's means of modeling its internal business and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

manufacturing processes. Whitefield and Auer explain that they rejected one

development possibility because "the development time and costs were prohibitive

considering the immature state of the HPM methodology. What was needed was a

quick and inexpensive prototype to continue exploring what kind of tool HP really

needed." (1991, p. 65, emphasis added) Because Hewlett-Packard was still

developing HPM, clearly they were unable to define it fully for Knowledge Systems.

The methodology and the computer tool which was to represent it were to co-

evolve in an exploratory process of interaction between client and software

designer.

As a specific illustration of this interaction, consider the following excerpt from

Whitefield and Auer's description:

In addition to its graphical representation, each component also has a
semantic counterpart. It is entirely possible to create and edit models
using only textual browsers, but few users ever do so. In fact, users
spend so much of their time using the construction diagram that they
tend to think of the diagram itself as the model. As the key nature of the
construction diagram became apparent, the following requirements were
established for the final to o l:... (p. 67)

"Became apparent" is the revealing phrase here. The users of HPMS at Hewlett-

Packard did not specify at the outset that for their purposes, a picture was worth a

thousand words. The designers learned this through interaction with their clients.

Without this interaction - suppose, for instance, Hewlett-Packard and Knowledge

Systems had tried to proceed by traditional "waterfall" methodology and begin with

a document containing ail the software specifications - the knowledge would

probably not have emerged, or at least not without a great deal of frustration,

misunderstanding, and delay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

Interaction between user and tool

Note that there is another kind of interaction at work here: that between the client

and the tool itself. The reason the HPMS users did not specify the importance of the

diagrams is probably that they themselves did not realize it; after all, they had never

used this kind of tool. The users discovered what they wanted and needed through

interaction with the tool itself, as it evolved.

Whitefield and Auer are explicit about the discovery that occurred as the users

interacted with the prototypes. They say, for example, "As the alpha version of

HPMS began to be used, response time was determined to be a critical factor in

user acceptance. A goal of less than two seconds to route and draw most diagrams

was established for the final product..." Also, "HP often desired cosmetic changes

to diagrams. As experience was gained with the tool, flaws in default placement

and appearance were uncovered. This was expected, although the extent and types

of changes were not." (p. 67, emphasis added) The users at HP needed to use the

tool to realize their speed requirements and to identify the flaws in the defaults.

There would seem to be two aspects of this discovery process at work in the client

users' interaction with the prototype. One has to do with the tacitness of

knowledge. Much of the users' knowledge of their work is tacit, inarticulate - they

know what they do much better than they can describe it. Therefore one element

of this discovery process consists of the user's discovering in the conscious,

articulate part of his mind, the knowledge that was always there in some sense

inarticulately, tacitly. In using the HPMS prototypes, for example, the users at HP

bring their tacit knowledge to bear, and where the tool does not match smoothly

with what they actually do, they detect problems. Of course they need not be able

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

to explain these problems completely. Tacit knowledge made more explicit

through interaction with the prototype need not be made fully articulate (that is not

possible), but only clear enough so that it can be communicated to the designer for

incorporation into the next version.

Another, more subtle aspect of this discovery process has to do with the

incompleteness of knowledge. Above we examined the bringing to light of

knowledge which already existed, but not in communicable form. In some sense

the users of the prototype knew all along that they wanted and needed certain

capabilities in the software, but they were unable to express these needs to the

designers. Now, by contrast, we consider the discovery of capabilities that the users

do not want or need at the outset, because those capabilities never occurred to

them in any manner. Only in working with the prototype do they first conceive of

these capabilities. Once they do conceive of them, however, they want them.

The working prototype provides a context in which previously unimagined

possibilities can come to mind. One programmer and tester of new software says,

"When I try out a new user interface, I find myself trying to do things with it. When

it won't let me, I'm frustrated." The interface - what the users see of the prototype -

- suggests possibilities to the users. It provides them with a new way to look at what

they do, and this look may generate new insights as to what they might do.

The tacitness and incompleteness of the user's knowledge of what they need are the

main reasons for the failure of traditional methodologies in modern software

development. Software requirements cannot be completely articulated in the first

stages of development because the necessary knowledge is incomplete and because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

much of it is inarticulate. Only through interacting with the developing tool do

users discover and communicate to the designers what they need.

Interaction between designer and tool

It is not only the users who interact with the tool, of course; the designers do also.

This may seem so obvious as not to need mention: how could the designers ever

produce their designs without interacting with them? The point to be stressed,

however, concerns the nature of this interaction: the designers themselves are

engaged in an evolutionary sub-process of generating the new knowledge which

constitutes the evolving design. They are learning also. Ward Cunningham, a

widely-respected programmer, designer, and methodologist, describes some of his

design experience in these terms:

We'd get an idea, type it in, and say "Let's see what that does." Kent
would ask me a question. I would say, "I don't know," but I'd just start
typing and we'd let the machine tell us.36

Designers' knowledge of design principles and various problem-solving techniques

is not all ready to hand, nor is it static and complete. They discover how to apply

this knowledge to new problems in the process of applying it. They ponder, they

sketch, they experiment, they try out various ways of decomposing the problem,

they make some initial decisions, they repeat the process. They learn by doing. In

Mullin's description, software design is fundamentally a matter of learning:

The best way to do OO program design is to realize that you are dealing
with systems, and the best source of information is the system you are

36 Personal interview conducted October 1992. "Kent" is Kent Beck, another pre
eminent Smalltalk programmer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

duplicating or enhancing. Your job is not to dictate how the system w ill
work, but to understand how the system already works. As you do this,
you are acquiring valuable information about the classes you w ill need
to construct your system and how instances of these classes interact with
each other at runtime, (p. 36)

A good illustration of the manner in which the designer learns through working with

the design comes in Mullin's description of the initial laying out of the views

(screens) that the user w ill see:

The actual act of laying out the view provides you with another set of
information you w ill need in constructing the prototype. By deciding on
the visual grouping of information in the view, you w ill also be
determining any data assembly, or aggregation, capabilities that the view
needs.

By laying out a view, you learn something; by deciding on grouping, you determine

needed capabilities. In brief, by interacting with the evolving design, the designer

learns more about what it should be.

A creative process such as software design is not deterministic, with output dictated

by input through some sort of black-box optimization. This would require the

designer to grasp the problem in its entirety at a glance, and on that basis to grasp

its "correct" solution. On the contrary, software design is an evolutionary process in

which the designer "makes sense" of the problem over time, and gradually puts the

design together. In this respect software design would seem to be akin to writing.

Composition is not a matter of copying out a book that has somehow popped into

the writer's head. Rather the writer works gradually from a vague idea to a fully-

conceived book, through a process of fleshing out, defining and refining, finding out

what "works" by trial and error. Similarly the software designer uses feedback from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

the design itself, seeing what works, what has promise, what relationships are

revealed that were unclear before.

Iteration: the design dialogue

We have discussed interaction between client and designer, and interaction

between both of these and the prototype itself. These two kinds of interaction are

closely related in practice, even the same in a sense, because it is largely by means

of their interaction with the prototype that the two groups interact with each other.

The prototype is a communication medium. Those involved communicate with one

another largely in their responses to the prototype, with these responses closely

observed by the other side. In a sense, there is a dialogue going on in which the

prototype is passed back and forth. The designers say, "Give this a try," and watch.

The users try it out, experiment, exclaim about some features, pout about others,

ask questions, and describe frustrations. "Well, this part is good,” they say, "but that

part needs to be more like so. Set up as it is, I can't do such and such." The

designers, in turn, think, "So that's what they want! (Why didn't they say so in the

first place?) Well, I can give them something twice as good as what they're asking

for. Wait until they see this..." In the next iteration, the user may respond, "No, no!

That's not what I need! But it's marvelous! You can do that?! Well then do it this

way...!"

This fanciful example illustrates another important characteristic of the learning

process that is software development: it is iterative. Both sides in the dialogue are

learning from one another. On the basis of what they learn in each round of the

exchange, they change what they feed back to the other side, thereby calling forth

new learning there. The process is gradual because learning takes time. The new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

software develops throughout this ongoing exchange, as more and more of the

necessary and appropriate knowledge gets built into it, and extraneous, unnecessary

knowledge is discarded. Here is Mullin, again:

In RP design, we stop designing on a regular basis in order to run the
prototype by the clients and users, thereby getting information on
adjusting our design before it's too late to do anything about the parts
they hate, or the things they really wish it had. So, for all my arguments
about seamless development environments, it appears that our design
actually progresses by fits and starts, as opposed to the seamless path of
traditional design evolution.

As it happens, this observation is wrong. These sessions with the client
are not "seams" in the RP design process, they are natural components of
it. They provide us with the means to continually adjust our design
course and goals as we learn more about what the client desires by
letting them interact with our best idea of what it is that they do desire.
As they do this, they will provide us with the necessary information to
extend the design another level. Recall that I observed at the outset of
this book that it wasn't realistic to expect to get a clear list of
requirements from a client when you commence a design project. We
are designing to the requirements we have and then using that design to
dig up more requirement information. (1990, pp. 86-7)

3. Designing as understanding: the role of tools for thought

We concentrated in the previous section on the social, interpersonal aspects of

software development. In this section we concentrate on the learning aspects. We

do this through an examination of the higher-order tools software designers use to

help them do their work of creating still other software tools. The fundamental

challenge in software development is to make sense of the complexity of the

systems we are trying to build: to understand them and the way they function, and

to express that understanding in code. Most of the tools software designers use,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

higher-level programming languages in particular, are tools for helping them

understand what they are doing.

An important and illuminating exception to this rule is automatic code generators,

both those that generate higher-level code from diagrams, and compilers, which

translate higher-level code into machine language. Paradoxically, although these

tools in a sense produce software automatically, without any human participation, a

look at their evolution, what they do, and what they do not do, reinforces the

fundamental point that software development is a wholly human learning process.

i L CASE tools

Let us start with a quick look at CASE tools proper. The mindset of mainstream

CASE methodology is illustrated in the following passage from CASE is Software

Automation (1989), by Carma McClure, an expert on computer-aided software

engineering. Having defined CASE as "the automation of software development,"

McClure expands as follows:

CASE proposes a new approach to the software life cycle concept, that is
based on automation. The basic idea behind CASE is to provide a set of
well-integrated, labor-saving tools linking and automating all phases of
the software life cvcle....

Traditional software technologies are of two types: tools and
methodologies.... Most software tools are stand-alone, mainframe-
based, and concentrate on the implementation part of the software life
cycle-

The software methodology category includes manual software
development methodologies such as structured analysis, structured
design, and structured programming. These methodologies define a
step-by-step disciplined process for developing software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

The CASE technology is a combination of software tools and
methodologies. Furthermore, CASE is different from earlier software
technologies because it focuses on the entire software productivity
problem, not just on implementation solutions. Spanning all phases of
the software life cycle, CASE is the most complete software technology
yet. CASE attack software productivity problems at both ends of the life
cycle by automating many analysis and design tasks, as well as program
implementation and maintenance tasks.

Because manual structured methodologies are too tedious and labor
intensive, in practice they are seldom followed to the most detailed
level. CASE makes manual structured methodologies practical to use by
automating the drawing of structured diagrams and the generation of
system documentation. (1989, pp. 5-6, emphasis added)

There are a number of points here worthy of note. One is the acceptance of the

idea of the traditional "software life cycle," which begins with analysis of the

problem domain, and proceeds sequentially in a "a step-by-step disciplined

process" through design and implementation stages. There are two important

hidden assumptions here. The first is that the problem is known and awaits our

analysis. The second is that implementation - actually writing code to solve the

problem - properly occurs after analysis and design are completed. In this regard

"the generation of system documentation" is also important. Traditional

methodologies depend on extensive documentation of requirements and

specification which are supposedly to be completed before coding begins.

Also noteworthy is the comment that "in practice [the structured methodologies] are

seldom followed to the most detailed level." This is undoubtedly due in some

measure to the tedium and labor-intensity to which McClure calls attention, but it is

probably due also to the awareness of those doing the work that because

requirements and their corresponding specifications are never really finalized, by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

the time they could actually complete a structured design, the requirements would

have changed and they would lose their labor.

Finally, note the implied connection between CASE and more traditional

programming languages, especially structured programming languages. As we well

see below, object-oriented technologies appear to offer a significant improvement

over traditional CASE.

A survey of the main features offered in current CASE tools37 reveals the following

ten basic functions, which I have grouped under four headings:

diagramming support

1. draw diagrams

2. check diagram consistency

data management

3. provide requirements database and requirements tracing

4. provide data dictionary

5. provide repository management (for workgroups)

6. support change management and version control

prototyping support

7. prototype (usually "screen prototyping")

8. paint screens

code generation

9. provide facilities for porting between platforms

10. generate code

37 This particular listing is drawn from Kara (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

With the exception of the last category (which we take up below in the section on

automatic programming), each kind of tool is devoted, in its own way, to helping

the designers learn about the systems they are building. The diagramming tools

produce data flow diagrams, entity relationship diagrams, or program structure

diagrams; or they do modeling - systems requirements modeling, data modeling,

behavioral modeling. All of these visualizations are aids to designers'

understanding of the complex system they are creating. And of course where a

team is doing the development, the diagrams help maintain coordination among the

team members, by giving them a shared focus for discussion and a helpful

visualization of what others are doing.

The tools for checking diagram consistency provide important feedback to the

designers from the evolving design embodied in the diagrams. Automated diagram

consistency checkers point out all the places where a version of the design is

inconsistent or nonsensical, i.e., where the designers have not fully grasped all the

ramifications of their actions. For example, sometimes designers w ill indicate all

the inputs necessary to a particular module, but fail to specify any output. Diagram

consistency checkers point out such flaws automatically.

The data management tools serve primarily to help maintain coordination among

the members of a development team. Modern software development is very much

a social process, as we have seen, depending on the contributions of many experts.

In this context it is very helpful to have a shared database where a variety of

information about the project can be stored and accessed. Because the

requirements of a system gradually develop and change as the system takes shape, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

is often helpful to have a history of their evolution, so that team members may

understand why something is being done as it is. Repositories are databases where

segments of code, modules of the system, can be stored and accessed by different

members of the team. And of course as changes are made and different versions of

the system are developed, it is important that coordination be maintained to avoid

conflicts and inconsistent expectations. In a general way, all this information

provided by the various CASE databases serves to help the developers understand

what is happening, to grasp the nature of the systems they are developing, so that

they may contribute their own knowledge to it.

The value of prototyping in aiding learning we discussed in the previous section

and need not repeat at length here: it helps the designers understand the needs of

the users and the users understand the operation of the evolving system, so that

both may better come to understand what the system can and should be.

All these tools are tools for learning, for making sense both of what one has done on

one's own and of what others on the same team have done and how that affects the

whole. This kind of conceptual development is the designer's bread and butter.

If you watch how a designer works you see lots of things going on which
give you some insight into the thought processes going on. Sometimes a
designer is just trying out some new idea. Sometimes a designer is
evaluating or making some catastrophic change to previous ideas
(maybe about 90% of the pictures a designer draws get thrown away).
Sometimes a designer is trying to customise something developed for
another purpose. Sometimes two designers who have developed
separate pieces of a solution are trying to bring them together.
Sometimes a designer is checking that all of the ideas actually hang
together. One thing you w ill see is that very little time is actually spend
on the finished product. (Robinson 1992, p. 4.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

3.2. Object-oriented programming environments

Programming environments such as Smalltalk provide some additional tools not

included in the above list of standard CASE functionality. (Smalltalk and similar

environments are not generally called CASE tools, even though they are certainly

instances of computer assisted software engineering in the simple meaning of the

term). The nature of these tools also points to the learning aspects of software

development, and suggests why Smalltalk has become popular for prototyping.

One of the most useful and important aspects of Smalltalk is that any chunk of code,

no matter how small, can be run - and produce meaningful results - at any time.

"Smalltalk is an incremental environment. Small, incremental changes are small

efforts."38 The technical term for this is incremental compiling. The capability is in

marked contrast to earlier programming languages, in which the whole program has

to be complete and accurate before it can be run. The importance of incremental

compiling to learning has to do with the complexity of software - we might think

we know what a piece of code does and how it interacts with other pieces, but

often we don't. In developing a system, it is extremely useful to check in with

reality at regular intervals, to make sure we understand. The ability to run each

module of Smalltalk and look at the results gives programmers the benefit of this

kind of rapid feedback from the system; it allows them to understand it better and

sooner. As one programmer puts it, "your thought processes don't get interrupted;

38 Ward Cunningham, personal interview, October 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

you don't leave the context."39 Additionally, incremental compiling leads to higher

quality, because smaller chunks of code are easier to test.

A related capability of Smalltalk is a built-in debugger. This is a tool for tracing

exactly what happens, step by step, so that when an error occurs or something

unexpected happens, the programmer can find the cause of the problem easily.

This capability also provides rapid feedback and hence clearer understanding.

Ward Cunningham credits this feature with a large part of the reason why Smalltalk

is such a good development environment:

There was never a risk of a bad bug, because whenever something went
wrong, we'd get a notifier [debugger], hop in the notifier, and it would
tell us what went wrong. We were never in a position where we didn't
know the next thing to do to diagnose our programs.40

It is important that the ongoing interaction between the designer and the design not

be interrupted too long. Less-capable languages cannot tell a programmer where

something went wrong, only that it did. In these circumstances it is possible to be

absolutely stumped. Accordingly, the programmer then has to search for the

problem. In so doing, she loses the context; her thought processes get interrupted.

Additionally, the whole program usually has to be recompiled and rerun before she

can make sure that she has fixed the problem correctly. The sheer time this all

takes is distracting; it makes it difficult for the programmer to concentrate on solving

the problem before her.

39 Lee Griffin of IBM, personal interview, October 1992.

40 Ward Cunningham, personal interview, October 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

The combination in Smalltalk of incremental compiling and the build-in debugger is

especially powerful. When one "hits a bug" in Smalltalk, a debug window appears

in which one can usually fix the problem quickly and easily. This change to the

program is automatically and immediately compiled and linked into the rest of the

program. Accordingly, it is not necessary to go back to the beginning, recompile

and begin the program again. Instead, one can simply continue with the program in

its newly repaired state, by pushing (with the mouse) the "Restart" button on the

debug window. Smalltalk users find this feature extremely important.41

Another important feedback capability of Smalltalk is known as type checking.

Smalltalk routinely checks the kinds or types of data that are being processed,

making sure each data item is of a type which the method operating on it is

equipped to handle. When Smalltalk discovers that this is not the case, it informs

the programmer with a debug window showing where the incompatibility occurs.

In a sense, then, Smalltalk looks for problems, on the assumption that problems will

occur.

O f course problems - bugs - do occur in all programming, but most programming

languages are ill-equipped to help developers deal with them. Indeed, many

languages pointedly lack these type-checking facilities, because they slow down the

execution of the program. Traditional programming languages rely on the

program's being correct; they assume that the end user is the only person whose

efficiency needs to be optimized, and aim to give the end user the fastest possible

41 Richard Collum, systems developer in a large Smalltalk product at First Union
National Bank of North Carolina, says simply, "The restart button is the greatest
thing." Personal conversation, October 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

program. Having type-checking going on is pointless, on this assumption, because

the delivered program, by assumption, w ill be accurate; all the checks w ill turn up

false.

Smalltalk, by contrast, recognizes in its very design that we live in a world of error.

The designers of Smalltalk took very seriously the learning challenges of designing

software, and therefore provided this type-checking facility to support software

developers.42 One developer enthusiastic about object-oriented languages says,

"these languages talk back to you and let you know when you are doing a good

job." The difference between "Smalltalk and C+ + 43 is that Smalltalk talks sooner

and louder when you are doing a bad job."44

Smalltalk also provides tools that give users a variety of different perspectives on the

code. For example, there are hierarchically structured "browsers" for viewing the

different elements of the code in the system. In addition to providing a handy

means of looking up and accessing some particular class of code; browsers

significantly aid understanding of software systems by providing a meaningful view

of the relationships between different elements of the system. Where a piece of

code is located in a browser window often carries more information than the details

of the code itself. Smalltalk provides windows which display relationships between

modules (objects) such as which kinds of objects send messages to others (messages

42 I am indebted Ward Cunningham for explaining this distinction.

43 Recall that C+ + is a hybrid language with certain object-oriented features.

44 Paul Ambrose, personal telephone conversation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

trigger actions by the objects which receive them). It also provides windows for

viewing the actual values of variables pertaining to particular elements of a system.

These different views into a complex system are very helpful in understanding it. In

fact, the very value of the Smalltalk browsers and windows has stimulated the

development of still other kinds of tools which give different perspectives into

software systems, to make more understandable various different kinds of

relationships. A complex system, by its nature, cannot be wholly understood. But

it can be understood better and better in proportion that one has a variety of

different perspectives on it. Each new perspective enriches one's understanding of

the other perspectives, and hence of the system as a whole.

The common characteristic of these programming tools is that they all serve to aid

the programmer in understanding the evolving software system. Such tools are

valuable because software development is a learning process; by their nature they

suggest how knowledge-intensive software development is. These tools help

programmers learn what they are working with and what remains to be done. They

show us that software development is not a mechanical matter of translating product

requirements to code, but of learning what the software is and needs to become.

On this point, Mark S. Miller, formerly of Xerox Palo Alto Research Center and now

co-architect of the Xanadu hypertext system, has said that he has reservations about

tools that generate code from diagrams. He prefers tools with which

you write the code and have it generate the diagrams. That's superior
because whatever you are programming in has to express the entirety of
the program, and people have found words and symbols to be superior

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

for that purpose. But the visualizing tools do a good job of representing
a slice of or aspect of the program, with different tools providing
different slices.45

Let us turn now to tools that generate code from diagrams, and other tools that, in

general, relieve the programmer of writing code. In their evolution are more

interesting lessons about software development as a social learning process, lessons

which reemphasize the fundamental point that the development of new capital

goods - whether software or more physical capital - is not a mechanistic affair, but

a creative, dynamic learning process.

U i Automatic programming

Automatic programming is a term we hear rarely now, but it refers to an important

dream of the software community. Among its descendants is the automatic code

generation provided by certain CASE tools. The goal of the advocates of automatic

programming was to have computers, rather than people, write programs. As Mark

S. Miller explains, there are opposite opinions of its success, and each opinion,

viewed from its own perspective, has validity.46

One view is that automatic programming was a total failure. Look around us; there

are millions of people writing programs, in a process that is anything but automatic.

45 Mark S. Miller, personal telephone conversation.

46 I am indebted to Mark S. Miller as the source of most of the insights of this
section and the next. Quotations are from my transcription of a telephone interview
with him unless otherwise noted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

Computers can't write programs; programming requires human imagination and

creativity. On its terms, this majority view is certainly valid.

But the activity we call programming today is a different activity from that which

was called programming years ago, when automatic programming was first

advocated. At that time, says Miller, programming

was largely low-level assembly hacking; for example, it was concerned
about what operand was in what register of the machine. As far as that
activity is concerned, the advocates of automatic programming
succeeded. They succeeded in automating what programming was then.

This success is thanks to the development of compilers for higher level languages.

As M iller says it, "we now specify what computation needs to happen, and the

implementation in particular machine instructions is handled by compilers." We

make this specification in higher level computer languages - languages which allow

us to specify what is to happen in terms more abstract than the computer can

handle directly. The compiler then transforms this more abstract coding into

machine code that the computer can read. (Obviously each different computer

language requires a different compiler for any given kind of machine.)

The historical change in terminology on which this disagreement turns is revealing

about the very nature of software development. Miller explains:

[Tjhere was an incremental and gradual transformation overtime of what
it means to program. The transformation was from programming's being
primarily implementation-oriented to its being specification-oriented.
The implementation issues that were much of the programmer's concern
in the old days are now handled by compilers.

To specify, in the software development context, is to state precisely what the

program must do. In standard software engineering usage, specification occurs in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

111

language more abstract than a programming language, typically a natural language.

M iller continues,

However, there is an extraordinary number of levels of abstraction in the
program. So when we think about specifying, at any point in the
evolution of programming languages, what we mean is conceptual
activity a few levels above where our programming languages are.
There's too much grungy detail in the languages for us, so we specify
with higher-level abstractions. What we do when we go from
specification to the current level of abstractions that our languages allow
us to operate at, is now called implementation. A few years ago, yes,
that implementation would have been seen as specifying, because then
we had no languages that could handle that level of abstraction. But the
particular tasks our term implementation refers to change over time, with
our capacities. At any time in the evolution of programming languages,
we see the level of abstraction that our languages permit us as "too much
grungy detail."

What we called specification yesterday - activity which is specification from the

perspective of lower-level languages - we call implementation today, because

today we have programming languages that allow us to capture and express that

level of abstraction, with compilers to do the work of transforming that abstract

expression into machine code. Over time, as programmers' essential higher-order

tools of production - their programming languages - have improved, what it means

to program has changed.

What can we learn about the development of software capital from this slice of the

history of programming? There are at least three lessons relevant to our present

purpose, learning how the capital structure expands and improves.

First, there is a necessary role for the human imagination in addressing the

particulars of each new capital need, in this case, each programming challenge.

Computers cannot figure out what must be done to solve a particular new kind of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

challenge.47 This kind of task is fundamentally a learning process - a matter of

understanding the problem, and adequately expressing a software system that can

address it. For the purpose of this expression, higher-level languages that enable us

to express abstractions better are very helpful. We address this point at length in

the next section.

Second, today's programming, i.e. design, is a profoundly social process in that it is

entirely dependent on the division of knowledge embodied in tools. Everyone who

uses a higher level language depends, for the realization of one's program in

executable form, on the creativity, knowledge, and expertise of those who built the

compiler one uses. Those who built the compilers have addressed for us, ahead of

time, "the grungy details" of machine instructions. Their knowledge, their

experience with what works well and what does not, is embodied for us in the

compiler we no longer notice. Because they have taken care of lower-level

automatable concerns, they free us to concentrate our efforts at higher conceptual

levels.

In a similar category to that of compilers are the tools for generating code from

diagrams or screen representations, and the tools for porting a system from one kind

of computer to another. Examples include graphical user interface builders, code

generators offered in certain CASE tools, and some visual programming languages.

In each case they let one specify what is wanted in one medium, generally higher-

level and more abstract, and turn that specification into code more accessible to the

47 Perhaps profound advances in artificial intelligence will make this possible
someday, but that day has not arrived.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

machine (or, in the case of tools for porting between different computers, to the

target machine). What all these devices have in common is that they embody

knowledge of how to transform one representation into another. They perform the

transformations for us, freeing us to concentrate on the substance of what we want

transformed.

A third lesson taught by this history is that as capital goods improve, there is a

concurrent, complementary development in what people using the tools know and

do. This is a very important species of social learning: what the relevant community

- in this case the programming community - does in their everyday work advances;

the community learns. Over time, the programming community has built up

knowledge of how to make efficient use of raw computer resources - how to

manage the grungy details of machine instructions. It has also built up knowledge

about what kinds of expressive capabilities are needed in computer languages. All

this knowledge has been built into a set of gradually improving languages, and their

related compilers. In an important sense, then, this community has learned a lot

about programming. The whole community is in a sense smarter in their

programming practices and tools. The change is reflected in the fact that what we

mean by programming is completely different now from what is was twenty-five

years ago. The change has been a social one in that the new knowledge is not to be

found in particular individuals, but in the whole pattern of interaction among

people, tools, and practices. Individuals don't necessarily know more - in many

cases they are clearly able to be effective while knowing less than their

predecessors - the knowledge that has developed is spread throughout the

community, in tools, languages and practices over which no one individual has a

complete grasp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

3.4. tools for aiding dialogue

There are many ways in which object-oriented languages try to address the problem

of social learning in design, some of which we have discussed already, and others

of which we w ill take up in the next chapter. In the present context - the

development of new software - probably none is as important as this: the "pure"

object-oriented languages such as Smalltalk let software developers design and

implement with a terminology that is suitable for thinking about the problems they

are trying to solve. The terminology, it is said, maintains a "proximity to the

problem space." Hence these languages, and the development methodologies built

around them, are not just tools for expression, but tools for thinking and learning

about complex systems.

Bertrand Meyer, a leading theorist of object-oriented technology and author of the

object-oriented language Eiffel, points out that traditional languages are hard to read

and understand; when we look at their code, the relationships are not clear to us.

This, he surmises, helps explain why diagrams are so much a part of the structured

analysis and design methodologies used with non-object-oriented languages.

"[Ajfter all," he says,

if you are programming in BASIC or C+ + you do need higher-level
tools and notations if you ever hope to explain or just understand what is
going on. But ...[wjith object-oriented techniques, implementation
becomes high level enough to cover what was traditionally covered by
design or even analysis. The same notation may be applied throughout,
at various levels of detail. For analysis and design, high-level facilities
such as classes... provide the key descriptive and structuring facilities.
For the final implementation, classes obtained earlier are completed with
the details of the algorithms and data structure implementations. (Meyer
1991, p. 39)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

"The same notation may be applied throughout" the development process, from

high-level tasks such as analysis and design through to low-level implementation,

for two reasons. First, as we have discussed, object-oriented languages, like other

high-level languages, allow us to specify things in ways more removed from the

concerns of the machine - at a higher level of abstraction. But object-oriented

languages are additionally significant, not because they are still more abstract than

other recent languages, but because they let us create our own vocabulary, tailored

to the problem space as we understand it, both for thinking about the problem and

for implementing a solution to it. Programming the solution to a problem in a

language like Smalltalk is a matter of creating objects and methods which represent,

respectively, the entities we wish to model and their behavior. Meyer says

This is the seamless property of 0 -0 development, which yields some of
the major advantages of the approach - among others, the fact that the
results of analysis and design are not lost or recorded in some obscure
intermediate documents or diagrams, but fully embedded in the final
delivered software. (Meyer 1991, p. 39)

We have said that building new capital goods is a matter of embodying knowledge

in a usable form: object-oriented languages are effective tools for this embodiment

because the terms in which they let us embody our knowledge are so similar to the

terms in which we naturally develop and express that knowledge. Object-oriented

languages provide software designers more immediate access to the problems they

are confronting; in using terms with immediate relevance to problem domain, they

avoid loss of meaning in translation. In a sense, they shorten the conceptual

distance between the knowledge that goes into the new capital good and the good

itself. In much traditional structured analysis and design, the designers do their

thinking with diagrams, which then must be converted into code by some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

translation process. Object-oriented languages, by contrast, allow the designers to

think in understandable code, thereby providing them a more immediate grasp of

the system.

Object-oriented languages, then, help us to bridge the semantic gap between

analysis, design, and implementation. There is no semantic gap, because the

semantics are the same throughout. In this respect, object-oriented languages are

superior tools for thinking about - learning about - complex systems. One

important result is to facilitate communication among people with different kinds of

knowledge to contribute to the software. Knowledge Systems Corp., a major

development consultancy firm specializing in Smalltalk, has extended the object-

oriented approach into a methodology (on which they are still working). They

have found, by modeling entities in terms of their behavior and
interaction, that both internal software objects and external entities can
be represented in such natural ways as to be accessible to non-computer
professionals like users and domain experts. (Adams 1992a, p. 5)

This methodology takes the idea of software development as a social learning

process to its fullest extent. In order to begin developing the Smalltalk classes that

w ill eventually be used in prototypes and evolved into a complete, running system,

the software designers at Knowledge Systems Corp. use role playing. The process is

overtly social, in that various different people with different knowledge and skills

are involved on the spot, and it is overtly a learning process in that it is a trial-and-

error method of discovering what the important objects in the software should be,

and how (by what methods) they should interact with one another. We quote at

length from Sam Adams' description of their experience:

While most methodologies rely on diagramming notations to attempt to
capture and communicate complex interactions between objects,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

roleplaying allows the designers to actually experience the behavior
firsthand. This theatrical anthropomorphism has many benefits in the
design process. Since designs can be "executed" very early in the
process using scenarios, alternative designs can be explored easily using
roleplaying as a form of rapid prototyping. Designs as complex as entire
manufacturing systems can be simulated in surprising detail, taking
advantage of the temporal and spatial nature of roleplaying that can be
only poorly captured on paper... An additional benefit of roleplaying in
design groups is that it tends to help involve everyone in the design
process, regardless of their background or experience, so all participants
can add their unique value to the process. (1992a, p. 6.)

We should note here that object-oriented technologies, and the methodologies

aimed at rapid learning which they support, come at a cost; their benefits trade off

against other considerations which make them inappropriate for some kinds of

software projects. A language such as Smalltalk, which allows programmers to

work at a high level of abstraction, generally runs more slowly than a language

more oriented toward the concerns of the computer. In cases where speed of

execution is paramount, it makes more sense to use a non-object-oriented language

such as C, which makes optimal use of the machine's speed and memory. Also,

where a problem domain is well understood, prototyping may add little to the

programmers' understanding of what they must accomplish. Object-oriented

languages and techniques are most valuable where exactly what is to be done is

unclear, and where it is more important for the software do what is wanted than to

do it as fast as possible.

Finally let us offer one somewhat philosophical perspective on software

development as social learning. The accessibility of OOPS, the manner in which it

empowers thinking about problems and expressing their solutions, demonstrates to

what great extent learning occurs in the context of the social world, with its shared

meanings captured in language. Higher level languages have increasingly let us

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

move away from the mundane concerns of the machine to concentrate on more

general and meaningful abstractions. Software designers using higher level

languages are much less distracted by the needs of the machine; their attention can

be focused on the needs of the system they are building, in terms of the system and

not the computer. Object-oriented languages and object-oriented methodologies

such as that being developed by Knowledge Systems Corp. let us take a very large

step in this direction, into the world of human discourse and imagination. In the

objects and methods of object-oriented languages we have something akin to the

nouns and verbs of the language of society. Accordingly, with object-oriented

languages our powers of expression and understanding improve substantially,

informed by the richness of meaning that comes with evolved language. Because

software development is a social learning process, it gets easier as we become

better able to do our thinking in terms of the social world we live in.

4. Summary

An examination of the tools and processes used in software development show it to

be a social learning process. The process is a kind of dialogue in which dispersed,

tacit, incomplete knowledge is brought together and embodied in new software

tools. The process comprises interaction between users and designers, between

users and the evolving tools, and between designers and the evolving tools. It is an

iterative process in which the evolving tool itself serves as the medium of

communication, with each new round of the dialogue eliciting more useful

knowledge from the different people involved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

As programming practice has evolved, higher-order tools have been developed to

facilitate the process. Some of these, such as compilers and code generators, serve

to automate the clearly understood aspects of the process. These can be seen as

freeing human effort to undertake, at ever higher levels of abstraction, the creative

learning that is the essence of design. Most of the tools now used to facilitate the

design process help software builders to get a better understanding of the complex

systems they build. The most promising of these tools are the object-oriented

technologies, which allow us to create the kinds of abstractions we need both to

think about the problems effectively, and to specify their solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Capital Evolvability: Lessons from Software

Maintenance

Knowledge comes, but wisdom lingers, and I linger on the shore,
And the individual withers, and the world is more and more.

- Tennyson, "Locksley Hall"

...when you realize that much o f the software problem has to do
with building very complex systems that w ill run on networks with
different kinds o f hardware, and that no application w ill be
considered done when shipped, you're inescapably led to a much
more biological, modular system, for which something like objects
w ill be required.

- Alan Kay48

1. Introduction

The process of software development does not end when the first version is shipped

to the customer. It continues throughout the life of the product. The world

changes, hence the software must change with it, if it is to maintain or increase its

value as a useful capital good. Users' requirements change as their businesses

change; the software needs new features to keep up with competitive products; it

needs to run on new machines, to be used on networks, to drive new printers and

plotters; etc. On the broadest view, as the economy grows and develops through

the accumulation of new knowledge and its embodiment in new tools and new

48 (1992, p. 13)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

systems, software products must themselves "learn" - develop and improve - to

maintain and improve their position of usefulness in complement to the other

elements of the evolving capital structure.49

The process of adapting and enhancing existing software is known as softw are

maintenance. It is challenging and costly. At present, the software industry is very

concerned about maintenance, as evidenced by advertisements such as the

following, which included a graphic of a hooded skeleton with a scythe, typing on a

computer keyboard:

Why Your Software W ill Die Before Its Time.
Entropy. It's the Grim Reaper of software development. As your code is
modified and enhanced over time, its structure gradually breaks down.
Until one day it simply can't be maintained anymore - not by you, not
by anyone.50

The kinds of changes driving today's severe maintenance challenge, as well as their

perceived importance, are suggested by the following lead copy from a twelve-

page, four-color, glossy advertisement that was pasted into the November 2 issue of

Computerworld. a major weekly news publication of the computer industry:

Today, information management professionals face more daunting
problems than ever before. The applications you develop must meet
business needs that seem to change daily. Mergers and acquisitions

49 Lachmann writes,

...it is impossible to receive a permanent income stream unless its source
has been kept intact, and ... this requires a problem-solving activity
which may succeed or fail. Maintaining the value of capital resources is
an important economic function. (1986, p. 73)

50 Set Laboratories advertisement in CASE Trends. Vol. 4, no. 6, September 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

create demanding integration scenarios. The introduction of new
technology brings with it the need for multiple platform deployment.
You're feeling pressure for client/server processing from management
and users alike. Meanwhile, the backlog of existing applications you
need to maintain and enhance keeps growing.51

As computer systems have become larger, more complex, and more important to

the success of enterprises, maintainability has assumed greater and greater

importance. Software systems which are readily maintainable allow their

enterprises to adapt quickly and smoothly to changes in their environment. Those

systems which are not maintainable become a terrible burden, especially if they are

essential systems. Accordingly, it has become more and more important to software

engineers to build systems which not only work well now, but which also can be

evolved without difficulty. In this chapter we examine, not the process of software

maintenance, but the characteristics of maintainable software systems.

In the preceding chapter we described software development as a social learning

process, and held that in an important sense it is the capital goods themselves that

learn - the software embodies the knowledge of many contributors, each of whom

knows only a little of what the others know. Only in the software itself is all the

relevant knowledge to be found. It follows, then, that what it means for software to

be maintained - changed, adapted, enhanced - is for it to come to embody more

and different knowledge than it embodied before. Our task, therefore, is to look for

the characteristics which allow software to embody new knowledge readily. These

characteristics can be summed up in a single word: modularity. We will see that

51 KnowledgeWare advertisement, insert, Computerworld. Vol. XXVI, no. 44,
November 2, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

because software development is a social learning process, modularity is essential

to software evolvability. To continue the figure of speech of software "learning," in

this chapter we will be investigating the aspects of modularity that allow software to

learn.

Let us make clear here at the outset what we mean by software maintenance. The

term may seem strange to those unaccustomed to its usage in the software field,

because software does not wear out, and hence should need no maintenance. But

as Hayek has stressed (1935), to maintain capital is fundamentally to maintain its

value in the evolving capital structure of which it forms a part. Obsolescence is just

as important as wear and tear. On this view, the term is not misapplied. It refers to

any activities aimed at keeping software running as needed, from mundane fixing of

bugs to adding enhancements.

As the term is used, however, it refers to more than simply activity which prevents

software from losing value; it refers also to development of the software which may

increase its value. As Sam Adams stresses, software "should be treated as a

corporate asset that can appreciate through investment in its quality and

reusability." (1992b, p. 6) In this work, by software maintenance, and related terms

enhancement and evolution, we will mean any changes made to software aimed at

maintaining or increasing its value by improving its usefulness in the evolving

capital structure. We mean, in short, investment in existing software assets.

Note that we draw no sharp distinction between the activities involved in initial

software development, and those involved in software maintenance. Indeed, many

software developers mislead themselves in seeing these activities as somehow

different and separate. Software development seems to be an ongoing learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

process, with much the same kinds of activities carried out whether a first version of

a product has been shipped or not. The dialogue-like process that goes on among

various users and designers at early prototyping stages continues in one way or

another through "the maintenance stage." At this point, users are not reacting to a

prototype, but rather to a delivered version of the product proper. Nevertheless, the

users are still learning from the software, the designers (maintainers) are still

learning from the users what is needed and from the developing software what is

possible. There is continuity between initial software development and

maintenance. The categorical distinction turns not so much on what the software

developers but on the legal and contractual issue of whether an agreed-on first

version has been shipped or not.

The reason we focus on maintenance for the purposes of this chapter is that in

maintenance the greater or lesser ease of adaptation appears. By looking at

software that is hard or easy to maintain, we gain insight into the design

characteristics of evolvable software. But it should be noted that we are really

interested in design issues - how do we initially design software so that it w ill be

maintainable, so that it can be improved over time?

2. Evolvability as a design goal

There is general agreement in the software industry that ease of maintenance is

fundamentally important. Practitioners in the software world clearly expect

continuous change, though they cannot know just what those changes w ill be. In

Frank Knight's terms, they face uncertainty. (Knight 1971) They are foresighted,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

though without clear vision of the future.52 Accordingly, they must plan as best

they can to meet those changes, whatever they may be. As Hayek says,

With respect to [changes of technical knowledge or invention] the idea
of foresight evidently presents some difficulty, since an invention which
has been foreseen in all details would not be an invention. All we can
here assume is that people anticipate that the process used now w ill at
some definite date be superseded by some new process not yet known
in detail. (1935, p. 97)

It appears that software developers have not always anticipated that change would

come as soon as it generally does. As we have seen, in earlier days many software

developers seem to have overlooked the pervasiveness of change, and tried to build

software to specifications they assumed to be fixed. But the years have made the

lesson clear. Change never ceases. Indeed, it seems to accelerate. Accordingly

developers now try to build software so as to facilitate change in general. Good

design, in an uncertain world, is design which prepares for change. A major goal of

good software design, then, is to ensure design evolvability.

2.1. Co-evolutionary development

The evolution of complex systems, such as the capital structure, is not a movement

toward some particular endpoint, or even in some particular direction. Evolution is

52 Lachmann writes

[T]he purpose of all capital, hence also of the current maintenance of
existing capital goods, is to secure a future income stream. But the
future is unknowable, though not unimaginable, and men have to use
knowledge substitutes in order to evaluate future income streams, viz.
expectations. (1975, p. 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

necessarily coevolution of the different elements of the system. In the capital

structure, this means that which tools become useful and which become obsolete at

any time is determined by what other tools happen to be developed also, and what

other technologies happen to be discovered.53 The development and availability of

any particular technology changes the opportunity costs of developing any related

good, whether substitute or complement, and thereby changes the appropriateness

of any particular investment.

Consequently "the best solution" to a particular problem is a mirage that appears

when one fixes on the moment. In another moment the problem will have

changed, and there will be a new "best solution," for the simple reason that others

have been working on related problems. There is no fixed skeleton or underlying

architecture for the capital structure. The skeleton, the architecture, grows as

particular entrepreneurs make particular choices. Each choice in response to a

particular aspect of a problem poses a new, or at least a changed, problem for other

participants in the process. In the words of Peter Allen, a specialist on evolutionary

dynamics at the International Ecotechnology Research Centre:

Evolution is not just about the solving of optimization problems, but also
about the optimization problems posed to other populations. It is the
emergence of selfconsistent 'sets' of populations, both posing and
solving the problems and opportunities of their mutual existence that
characterizes evolutionary dynamics. (Allen, 1990, p. 25)

f
Software developers, then, must try to build their products so that they can be

evolved in such a way as to maintain a reasonably good fit in the evolving capital

53 Other factors include people's expectations, the interest rate, availability of
skilled personnel, etc. See Lachmann (1986) and Hayek (1935).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

structure around them, regardless of how - out of a broad continuum of possibilities

- that capital structure may evolve.

Ul The Optimization Trap

Crucially, this means that optimization of software for any task as defined at a

particular moment, should frequently be sacrificed for greater flexibility of design.

This is not to say that achieving an excellent fit between software and given task

should be ignored; of course suitability to a particular set of specifications is

important. But hard experience has shown optimization as such to be highly

problematical, because optimization trades off against flexibility. As Bertrand

Meyer puts it, in discussing tradeoffs among different goals of software design,

...optimal efficiency would require perfect adaptation to a particular
hardware and software environment, which is the opposite of
portability,54 and perfect adaptation to a particular specification, whereas
extendibility and reusability55 push towards solving problems more
general than the one initially given. (1988, p.7)

Software designs, in today's business environment, are like organisms in an ever-

changing eco-system: if they cannot mutate with reasonable ease, the species is

likely to disappear. In this we find an illustration of a basic principle of evolution.

In Peter Allen's words,

...evolution does not lead to individuals with optimal behavior, but to
diverse populations with the resulting ability to learn. The real world is

54 Portability is the ease with which a program built for use in one environment,
e.g. on one kind of computer, can be adapted for use in a different environment.

55 We discuss extendibility and reusability below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

not only about efficient performance but also the capacity to adapt.
What is found is that variability at the microscopic level, individual
diversity, is part of evolutionary strategy... In other words, in the shifting
landscape of a world in continuous evolution, the ability to climb56 is
perhaps what counts, and what we see as a result of evolution are not
populations with "optimal behavior" at each instant, but rather actors
that can learn! (Allen 1990, p. 15)

In other words, to be successful over time, the entities that populate complex,

dynamic systems - whether species in the natural world or software systems in the

capital structure - must not be optimized for a certain set of conditions, but evolved

for evolvability. In the software setting, the "actors" are software product lines,

which compete in the economy for wider use. A product perfectly adapted for, say,

an IBM mainframe system using identical terminals all at one site is likely to be in .

trouble when the company using it decides to downsize to a network of various

workstations and PCs, communicating over a network spread across five cities. That

species of software would be much more survivable were it less optimized and

more evolvable.

2 3 , Aspects of software evolvability

There are two main kinds of software evolvability for us to consider. In Bertrand

Meyer's terminology, these are as follows:

56 "Climbing" here refers to "hill-climbing," a metaphorical term in ecology
referring to the ability of a species to develop characteristics that enable it to
flourish - to climb the "hill," defined in characteristic-space, of characteristics suited
to survival in a given configuration of populations and resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

• extendibility - the ease with which software products may be adapted to

changes of specifications, and

• compatibility - the ease with which software products may be combined

with others. (Meyer, 1988, pp. 5-6.)

It is important to remember that all software, except for very simple, short programs,

comprises systems of related functionality. To maintain awareness of the

complexity of software, it is frequently helpful to think of it as being more like a

factory, embodying a variety of machines and processes all working together, than

like a single machine. From this perspective and in Lachmann's terms, software

extendibility is a matter of capital recombination. In adapting software to changes

in the specifications, some elements of its functionality are eliminated, some

replaced, and others added; in much the same way that in retooling a factory to

new production demands, some machines or processes are eliminated, replaced, or

added. Software extendibility is the ease with which these changes can be made.

Similarly, software compatibility is matter of capital complementarity and (multiple)

specificity. A software application is compatible with others when a

complementary relationship can be easily established with them. It is incompatible

when the different packages are so highly specific to some original purpose or

context that they cannot easily be made to work together.

In this discussion it is important to remember that our attention here, as throughout

this work, is primarily on designs, rather than on particular instances of designs. For

instance, we are more concerned with how hard or easy it is for Microsoft Corp. to

evolve the design of Word for Windows - enhancing it or enabling it to work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

smoothly with some other programs - than with how hard or easy it is to change

the copy I use to write these words. Similarly, in applying the lessons we learn here

to "hard" tools, we are more concerned, say, with how easily a locomotive

manufacturer may design the next generation of locomotive, than with how easily

some railroad company may rebuild a particular engine to achieve higher levels of

performance. Maintaining the value of particular instances of capital goods is

important (especially when doing so in fact involves design changes), but our focus

here is more on how the design itself - the state of the art in word processors or

locomotives - evolves. This outlook seems consistent with Austrian capital theory.

When Lachmann refers to a vintage locomotive's gradually being relegated less and

less important duty, and ultimately to the scrap heap, he makes clear that it is

"kicked downstairs" further and further by "the march of progress" - not by newer

instances of the same model, but by a succession of newer designs using better

technologies.57

The challenge of software maintenance, with its corresponding imperative that

software be evolvable, casts an interesting light on the work of Hayek and

Lachmann on capital maintenance and capital evolution. Both address issues of

restructuring, of investments and capital combinations, when inevitable changes

occur. Neither, however, emphasizes the issue raised here, of maintaining

flexibility in the capital structure so as to be able to cope with future changes that

cannot be fully anticipated. Lachmann, for example, in Capital and Its Structure

speaks of "the changing pattern of resource use which the divergence of results

57 (1978, p. 38). Lachmann quotes an elegant passage from Dynamic Equipment
Policy (1949, McGraw-Hill), by George Terborgh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

actually experienced from what they had been expected to bef imposes on

entrepreneurs." (1978, p. 35, emphasis added). Similarly, in "Another Look at the

Theory of Capital" he says,

The capital stock in existence always contains 'fossils', items that w ill
not be replaced and would not exist at all had their future fate been
correctly foreseen at the date of their investment. (1986, p. 61, emphasis
added)

Focusing as he does on changes that must be made in the capital structure when

entrepreneurs incorrectly forecast the future, Lachmann may seem to suggest that

entrepreneurs fully commit themselves to their vision of the future, tying their

capital investments tightly to the future needs they anticipate, and allowing

themselves no flexibility to adjust if events take a different path. In such cases we

can properly speak, as Lachmann does, of "failure" and "error."

Here we suggest that frequently entrepreneurs do not commit themselves so

completely to a particular view of the future, but rather make their best estimate of a

range of likely outcomes, and build into their capital goods a flexibility with which

to cope with this range of outcomes. There is a tradeoff here, of course. More

flexibility w ill generally mean less perfect suitability to a particular set of

circumstances, and some entrepreneurs might choose to bet their companies on the

details of their foresight, seeking the higher return that w ill come from greater

suitability. Others w ill accept a slightly lower prospective gain, building in more

flexibility to allow them to adapt better. The upshot is very much the same, of

course: there must be constant adjustment because the future was not, and could

not be, correctly anticipated in all its detail. But many of the imperfectly adapted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

capital goods in use at any time can be seen as imperfect not as a result of failure,

but as a result of planned flexibility.

3. Evolvability through modularity

It is generally accepted in software engineering that modularity is crucial to software

extendibility, compatibility, and also reusability, which we take up below. Why?

How does modularity facilitate evolution? What aspects of modularity are

important, and how are they related to characteristics of the social learning process?

These are the questions we take up in this section.

i l , How modularity promotes evolvability

Simply stated, modularity leads to evolvability because in order for a software

system to evolve smoothly, its overall structure must allow the maintainers

(enhancers) of the system to pull out some part of the system's functionality and

replace it with better, and/or to add new functionality, without too much difficulty.

When software architecture is appropriately modular, with functionality

encapsulated in relatively independent modules, these changes are relatively easy,

because they are confined to a few modules. In non-modular architectures, by

contrast, there are lots of interdependencies among different parts of the system

which make the adaptation or extension very hard to accomplish, because so many

different parts of the system are affected.

In this respect it is essential to note that the sheer amount of work involved is

usually not the issue; the issue is grasping what work is to be done. True, where

there are lots of interdependencies among different parts of the systems (we don't

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

call them modules because the existence of many interdependencies implies that

the system is not modular), there w ill be more work to do bringing the whole

system into coordination when a change is made. But more important than simply

doing all this work is the danger that it w ill not be clear what must be done. A non-

modular system w ill be significantly more difficult to understand than it might be.

Accordingly, when functionality is added or changed, it is not clear what parts of

the system are affected, and a great deal of effort must be expended finding out

where problems remain. Here again is the complexity constraint we mentioned in

Chapter 2. Software development is a learning process; if a system cannot be

understood, then further learning in respect to it is encumbered. In extreme cases

of multiple interdependencies in large systems, the system becomes literally

incomprehensible; then adding or changing functionality in any but trivial ways is

so difficult that the task is not one of change, but of beginning again and recreating

the system entirely.

Modularity makes possible the evolution of extremely complex systems because the

modularity allows people to understand the system in pieces at various levels of

abstraction. Each module is understandable as an entity on its own, and the overall

system structure is understandable in terms of the relationships among these

entities. While no one can understand a whole system in its entirety all at once, in

order to maintain the system it is necessary only to understand clearly defined

pieces of the whole, and their interrelationships with near neighbors.

An important factor here is the limitation on what participants in the development

process need to know. This is called information hiding; we take it up in more

detail below. Information hiding facilitates division of knowledge in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

development process by making it unnecessary for a programmer working on one

module to know very much about another module. Generally speaking, all one

needs to know is what services a module provides, and how to ask for those

services. How those services are provided is irrelevant.

Finally, appropriate modularity promotes evolvability because it leads to

decentralized rather than hierarchical architectures, making it is easier to add

functionality. Traditional design approaches frequently involve functional

decomposition, in which a central function or purpose for the system is

systematically decomposed into subprocesses at ever more fine-grained levels. In

such architectures, it is difficult to add pieces without reconstructing much of the

whole. Modular architectures, by contrast, tend to be designed by representing the

various parts of the system being modeled. With such decentralized architectures,

the pieces have a more equal relationship; the structure is more organic. Adding

functionality is more like adding a node to a network than reconstituting a rigid

skeleton.

12* Kinds of modularity

What, exactly, do we mean by modularity? What are its aspects? There are several,

and they are not all complementary. In fact, designers must often decide among

different aspects of modularity when conflicts arise. The following list comes from

Bertrand Meyer's well-regarded Object-Oriented Software Construction. These are

Meyer's criteria for helping evaluate design methods with respect to the modularity

they yield. (1988, p. 12ff.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

modular decomposability

This is the ability to decompose a problem into several subproblems, each of with

may be worked on separately. This kind of modularity is essential to take advantage

of specialization and the division of knowledge. If different individuals or teams are

to be able to work on a problem at the same time, that problem must be

decomposable into subproblems.

modular composability

Quoting Meyer,

A method satisfies the criterion of Modular Composability if it favors the
production of software elements which may be freely combined with
each other to produce new systems, possibly in an environment quite
different from the one in which they were initially developed. (1988, p.
13)

Composability is an matter of multiple rather than single specificity. If we are to

take advantage of division of knowledge, then we need to depend on others'

contributions, and we would like to enable sharing across time and place through

embodiment of knowledge in composable modules. Where modules are

composable, then it is not necessary to build anew when a new need arises for the

functionality they provide. Composability provides economies of scope in design.

It is a matter of great importance in software development; we take it up below in

section 5.

Note that composability may be at odds with decomposability: decomposing a

problem into finer and finer subproblems may yield modules highly specific to the

problem at hand, not generally applicable to other kinds of problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

modular understandability

This is the ability of a module to be understood on its own by a human reader, or

with reference to at most one or two related modules. Code is not modularly

understandable if it is meaningless except in context. It is modularly

understandable if one can perceive what it does even in isolation from other

modules. Understandability is a communication and coordination issue, important

because software development is a social process. Whenever more than one

person works on a software system, or even when a single person works on a

system over time, coming back later to code that she wrote some time before,

understandability is important, because it reduces the knowledge overhead for

each individual who works on it. Consequently understandability is also a division

of knowledge issue, because if understanding one module requires knowledge of

many others, it is difficult for someone to specialize.

Understandability is of course essential during maintenance, when programmers

other than those who built the code have to work on it. Generally, modules that

correspond to identifiable abstractions in the real world tend to be more

understandable than those that do not.

modular continuity58

This is the characteristic that small changes in problem specifications require

changes in only one or a few modules. It has fundamentally to do with localization

58 Meyer takes the term by analogy to continuity of functions in mathematics, in
which small changes in variables lead to small changes in results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

of change. In everyday terms, a small change in specifications should require only

a little bit of work. An illustrative counter-example of continuity is the great

disturbance caused in many non-modular business software systems when the Post

Office switched from five-digit zipcodes to the present nine-digit zipcode. Many

software systems did not localize their treatment of zipcodes, and had to be

extensively rewritten at great expense.

Continuity is important because the learning process of software development does

not stop. What the software must do w ill change; the more easily these new needs

may be accommodated, the better.

modular protection

Quoting Meyer again,

A method satisfies the Modular Protection criterion if it yields
architectures in which the effect of an abnormal condition occurring at
run-time in a module w ill remain confined to this module, or at least will
propagate to a few neighboring modules only. (1988, p. 17)

Modular protection might at first seem insignificant to the software development

process as such, because it concerns run-time problems - problems that occur when

the software actually operates, not problems that occur in getting it to operate. But

there is an important implication for software development, given that software

development is an uncertain, somewhat experimental process. That is, where there

is modular protection and errors tend not to spread, programmers feel more free to

experiment and hence to discover solutions. Ward Cunningham reports, for

example, that in his team's development of the WyCash+ portfolio management

package, which is built in Smalltalk with careful attention to modularity, they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

sometimes attempted major rearchitecting of the system. Sometimes the attempt

would fail and they would have to revert to a previous version, but on other

occasions they could accomplish very significant change with surprising ease.59 By

contrast, one frequently hears that programmers who work on large programs built

with conventional techniques and without the support of object-oriented languages

are "terrified to make changes because they are afraid that it will break."60

4. Design principles that yield modularity

Now that we have examined the benefits and meaning of modularity in software

systems, let us turn to the practical matter of how modularity may be achieved.

From a slightly broader perspective, this is a matter of asking what kinds of

characteristics enable software capital to evolve well. Putting it metaphorically, we

are asking what makes software flexible.

Kent Beck, a well-known Smalltalk expert and president of First Class Software, has

observed that, "when you are in a brittle medium," it is important to do separate

analysis and design on any software project before beginning coding, in order to

avoid downstream costs and problems.61 (It is often necessary despite the problems

we saw in the last chapter: that necessary knowledge is often unavailable until users

59 Personal interview, October 1992.

60 This observation was made to me by Bill Waldron of Krautkamer Branson in
informal conversation. Krautkamer Branson builds ultrasonic flaw detection
devices, using the C language for their software.

61 Personal interview, October 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

have a chance to see and use a running version. The point is that when program

development is done in an unforgiving programming language, there may be no

alternative.) One of the main downstream costs is the plain inability to make

changes one would wish to make. One designer at IBM observed that C programs

often stay unwieldy and difficult to work with, because when a team perceives

some kind of major change they would wish to make, they must proceed with their

current, inferior design because there would be just too much to change to get the

program the way they would like it.62 (This designer was working, at the time he

made the comment, on a system built in C. He wished to return to Smalltalk, with

which he claimed he could be ten times as productive).

When one is in a flexible medium, however, it becomes far more possible to let

analysis, design, and implementation occur together, without encountering

excessive downstream costs and problems. When the medium is flexible enough, it

is not so costly to make changes downstream as one learns. In brief, maintenance is

easier.

What are the design characteristics that allow software to evolve, that allow new

knowledge to be built in smoothly? Again following Meyer, we can identify five,

and we quote his statement of the modularity principles in each case. (Meyer 1988,

pp. 18-23). Each of these principles is rooted in the social nature of software

development: for software to be extended and enhanced, people must work on it,

generally in groups. These principles facilitate that group effort.

62 Lee Griffin of IBM Corp., personal conversation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

4.1. Linguistic modular units

"Modules must correspond to syntactic units in the language used."

This principle requires direct mapping of terms in the programming language to

design elements (and further, ideally, to real world entities being modeled in the

software system). Sometimes this feature is known as "proximity to the problem

space": the terms used in the programming language refer directly to modules of the

system, which represent elements in the problem space. In business programs, for

example, there might be modules such as P u r c h a s e O r d e r , C u s t o m e r , and

C r e d i t C a r d C o m p a n y . In a design which holds to the principle of linguistic

modular units, real world purchase orders would be represented by separate

purchase order modules in the software, in which P u r c h a s e O r d e r is a distinct

syntactic unit.

The crucial benefit of linguistic modular units is that they make it easier to think

about and understand complex software systems. This is important both in helping

individual programmers understand the systems they are working on, and in

enriching the dialogue among designers, users, and programmers, who can use the

same terminology in describing the system from their different points of view.

To see the value of this principle, consider that in older programming languages,

modules frequently were not identified linguistically within the programming

language. They might stretch, say, from line 450 to line 755, and be accessed by a

statement such as, "GOTO l i n e 4 5 0 ." The necessity simply to remember what

happens in the module is obstructs programmers' progress; it is much easier to work

with a statement such as, " P u r c h a s e O r d e r n e w i n i t i a l i z e . "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

4.2. Few interfaces

"Every module should communicate with as few others as possible."

The more interconnections there are between modules, the more likely it is, when

one of them needs to be changed, that those to which it connects w ill have to be

changed also. Thus, for the sake of continuity, the number of interconnections -

interfaces, in software terminology - should be restricted. Restricting the number of

interfaces helps maintain the division of knowledge, because those responsible for

interacting modules must coordinate when changes are made, and if only a few

modules interact, then there is less coordination overhead, less propagation of

change.

Having numerous interfaces, with their associated rigidities is a common

consequence of centralized designs. Generally speaking, in centralized, top-down

structures, most of the modules at the periphery need to communicate in some

fashion with the modules at the center, which are responsible for reconciling their

interactions. The soviet-type economy comes to mind. The difficulty is that

everything depends on proper operation at the center, and if a problem occurs there

or some change becomes necessary, everyone is affected. Furthermore, centralized

structures imply some fundamental, overarching purpose.

By contrast, there are

...more "libertarian" structures, [in which] every module just "talks to" its
two immediate neighbors, but there is no central authority. Such a style
of design is a little surprising at first since it does not conform to the
traditional model of functional, top-down design. But it may be used to
obtain interesting, robust architectures; this is the kind of structure that
object-oriented techniques tend to yield. (Meyer 1988, p. 47)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

In such structures, dependencies are greatly reduced. Additionally, these structures

lend themselves to systems in which there is not one clear purpose, but rather a

variety of different services that the software may provide its users. As an economy

has no central purpose, and therefore functions best according to decentralized

interactions among the agents that constitute it, so also many software systems have

no central purpose, and therefore are best structured in a decentralized manner.

Good examples of such systems are the increasingly popular "enterprise models."

These are essentially software representations of an entire enterprise. The modules

represent, say, different divisions of a business or different processes that occur

within them, and the interfaces among modules represent the interactions among

related parts of the business.

4*2, Small interfaces (weak coupling)

"If any two modules communicate at all, they should exchange as little
information as possible."

Meyer's statement of this principle is perhaps overstated. The point of this

principle, as of the last, is to reduce dependencies, rather than to reduce

communication. The difficulty this principle seeks to avoid is having modules

depend on a large amount of shared information - more than what they actually

need to interact usefully.

There are a number of difficulties with extensive dependencies. One is that

modules become "tightly coupled" in depending on a lot of the detail of one

another, or on some shared data source. This hurts evolvability, because when

some part of that detail or data changes, the modules must be rewritten, and when

errors occur, they propagate widely. Furthermore, when one module has access to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

much of the detail of another module, there is the danger of interference. What this

means in practice is that in the development process, programmers w ill be tempted

to use too much of the available information in the design of their own modules. If

and when that information changes, module design must change, too. Moreover,

when modules communicate too much information, programmers may

inadvertently use more of it than is safe, without even being aware that they are

doing so. The danger is no less for experienced programmers than for

inexperienced, because the experts might be additionally tempted to "make clever

use" of some of that information, which may later change. Simply put, this

principle holds that modules should be as independent as possible.

Object-oriented techniques, as we have said, address this issue by the equivalent of

property rights to data, (Miller and Drexler 1988) achieved through encapsulation of

data and message passing. No object may directly access some other object's data;

that is private, and contained within the object. Instead, one object gains the

services of another through passing a message: the message contains only the data

needed by the service providing-object, and the response contains only the data

specifically asked for by the client.

Objects communicate what they have and what they can offer; what they pointedly

do not communicate are any details of how they work. For this reason they are

known as "abstract data types."

Using abstract data type descriptions, we do not care (we refuse to care)
about what a data structure is; what matters is what it has - what it can
offer to other software elements. ...[T]o preserve each module's integrity
in an environment of constant change, every system component must
mind its own business. (Meyer 1988, p. 54)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

Restricting the amount of information that passes across an interface is an aspect of

information hiding, an important element of modular programming, which we take

up in more detail below.

4 A Explicit interfaces

"Whenever two modules A and B communicate, this must be obvious
from the text of A or B or both."

The reason for this principle is clear: for people to work with modules effectively, it

must be clear what they do, and where interdependencies lie. Few problems so

hinder smooth evolution of a system as hidden interactions which cause

unexpected effects. Ideally, the communication between modules should be

obvious from the text of both.

4JL Information hiding

"All information about a module should be private to the module unless
it is specifically declared public."

Information hiding dramatically reduces the complexity that programmers face and

the cognitive demands on them. In a manner suggested by our discussion of small

interfaces above, it allows programmers to ignore the contents and functioning of

modules they call on. The programmer is thereby freed to think simply about what

services those modules provide. While information hiding tends to decrease the

likelihood that a programmer might improperly try to change another module,

[7]he purpose of information hiding is abstraction, not protection. We
do not necessarily wish to prevent client programmers from accessing
secret class elements, but rather to relieve them from having to do so. In
a software project, programmers are faced with too much information,
and need abstraction facilities to concentrate on the essentials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

Information hiding makes this possible by separating function from
implementation, and should be viewed by client programmers as help
rather than hindrance. (Meyer 1988, p. 204)

Separation of interface and implementation is the essence of information hiding.

The interface - the messages or routines through which a module interacts with

others - must of course be publicly known. But its implementation, the methods it

uses to carry out its tasks and the data structures it draws on, should be private.

Others should not need to know them. An important benefit is that when for some

reason, a module's implementation is changed, other modules are not affected. As

long as the object in question responds to the same message, other objects calling

on it for services are not affected.

In object-oriented languages, one way in which information hiding is accomplished

is through the combination of polymorphism (see Chapter 2 for a description) and

dynamic binding. Wide varieties of related objects may be called on

polymorphically, i.e., with the same interface, that captures some abstraction they

share. Continuing with our example from Chapter 2, doors, windows, books, and

mouths may all be shut. The same term shut applies polymorphically (in a variety

of forms) to each. Of course there is a different procedure for each variety of shut,

corresponding to the different (kinds of) objects, but that procedure may remain

hidden from those who write the client code. The right procedure is applied to

each through dynamic binding, the software system's ability to pick the appropriate

procedure for each different kind of object (bind procedure to object) as the

program actually runs. The decision is made "on the fly," and it changes with

different kinds of objects; in this sense it is dynamic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

The great benefit that polymorphism and dynamic binding provide programmers

and programmer teams trying to evolve software is that the combination allows

them to concentrate on the essential abstractions and not get lost in the detail of

implementation. They can use their natural faculties for conceptualization and

abstraction and apply them directly to the problem they are working on,

comfortably removed from the nitty-gritty requirements of the computers.

An illustration of the benefit comes from the recent experience of Texas Instruments

in building a new computer-integrated-manufacturing system for manufacture of

semiconductors. They built the system to control fabrication machines built by

Texas Instruments, but at a late point in the development had to extend the system

to control fabrication machines built by a third-party supplier also. It was not

necessary to build a separate system to control the different machines. The same

interface was used for the third-party machines as was used for the Tl machines; all

that was necessary was to tailor the new implementation code to the needs of the

third-party machines.63

These principles of modular software construction are not easy to achieve. Because

there is always a temptation to hack a quick solution, rather than maintain sound

modularity, it requires constant thought and work to adhere to these principles, to

keep a program evolvable as it evolves. Ward Cunningham says that in order to

control complexity, "when you learn something about how you should have done

63 Experience report presented at OOPSLA 1992 by John McGehee of Texas
Instruments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

it, you have to change the program to do it the way you should have done it."64

This is a process he calls consolidation, which he likens to paying off the principle

of a debt.

Whenever one allows a design to become sloppy, as w ill often happen in

experimenting with different solutions, it is as if one has borrowed money. Because

one sloppy solution leads to problems that can be addressed with other quick fixes,

the size of the debt can grow, with maintenance problems as the interest that must

be paid. Eventually, and preferably sooner rather than later, the debt must be paid

off, by cleaning up the sloppiness and restoring the modularity of the system, if the

system is to remain evolvable. What this accomplishes is an appropriate

embodiment of the problem knowledge currently available, in a robust, evolvable

design. On that design new knowledge may then be readily built. Referring to his

experience as designer of the WyCash+ portfolio management system,

Cunningham says that the consolidation process would make

the organization of the program closer to our current thinking. And once
we did that we were free to advance to our next stage of thinking.
instead of being tied back to thinking in terms of the old program.65

5. Accelerating evolution through software reuse

The implied context of discussion so far in this chapter has been the evolvability of

particular software systems. We have considered what it means to be modular, and

64 Personal interview, October 1992.

65 Personal interview, October 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

what design characteristics tend to yield the sort of modularity that promotes

evolvability of software systems, taken, implicitly, one at a time. In this section we

broaden the perspective to consider an important way in which modularity

promotes evolvability of the capital structure more generally: we consider not just

single systems, but sets of systems that are able to share modules. Here we take up

the subject of software reuse, a subject given a tremendous amount of attention in

the industry today.

Software modules, when they adhere closely to the principles we have just

discussed, can be reused in a variety of contexts. Increasing availability of such

reusable modules, frequently referred to as software components, should

substantially increase the rate of development of the software capital structure, and

improve quality also. Not only does reuse reduce development costs on any

particular product, but also it initiates a trend of continually increasing productivity,

an upward spiral of wealth creation, as the programmers build on past

accomplishments of themselves and others.

In considering reuse, we must think of software maintenance in two ways. One is

what we have considered to this point: adapting and enhancing existing software

systems in response to changing needs. Reusable components contribute

significantly to this process, as we shall see. The other concerns maintenance of the

software components themselves. Components can of course be more or less

reusable as they are easier or harder to understand, or require more or less

adaptation in a new setting. Maintenance of components, then, is a matter of

investing in the components' reusability, by, for example, making them clearer,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

simpler, better documented, more generally applicable, more modular according to

the principles we discussed in the last section.

With the development of reusable components, we add another order of capital

goods to the software capital structure. Software components constitute working

capital for programmers, to be used in the construction of the software tools (or tool

systems) they build. When they have components available, they need not build

those inputs from scratch; rather they take advantage of the prior work of specialists

who have built those inputs for them. Components are analogous to pre-built

motors and gears used by a machine builder in constructing a new machine, or to

machines themselves used by a factory designer in laying out a new factory.

5.1. Freeing programmers to create

It has long been lamented that programmers too often build from scratch, trivially

reproducing functionality that has been developed as well, or better, many times

before. (Hamming 1968) Software components, particularly those based on object-

oriented technologies, in providing a greater degree of modularity in programming,

make reuse more feasible than in the past. With code reuse, what has been

accomplished before need not be repeated, but simply incorporated, perhaps with

simple modification.

Hence the most obvious benefit of software reuse: the savings that come simply

from not reproducing what has been done before. This saving of programmer hours

would be very significant even if the story ended here. But the programmer time

and creativity that would have been spent reproducing may instead be spent

creating, pushing outward the frontier of the new and challenging. This more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

concentrated attention on new problems leads to an increased rate of software

development overall, with the corresponding improvement in society's ability to

produce new wealth.

JLZ Stockpiling expertise

Furthermore, the range and quality of the capital goods available to programmers

steadily increase in a reuse environment. In essence, as software systems are

developed, and from them reusable components are made generally available, the

software capital structure grows directly. As more and more expertise is built into

the environment the programmer uses, as more and more abstractions are built into

reusable components ready-to-hand, the programmer may be more effective still.

To the extent that these components are shared in an organization or a market,

programmers stand on one another's shoulders.

A number of studies suggest the power of reusable components to augment

productivity.66 Sam Adams has reported on a series of products that Knowledge

Systems Corp. built for Hewlett-Packard using Smalltalk, beginning with a project

called Hierarchical Process Modeling System (HPMS). Adams reports that

subsequent projects

benefited greatly from the components developed during the HPMS
project. In addition, several of the components were redesigned during
their use in other projects and were then reintegrated into HPMS. As a
result, several of the components were refined several times across
different projects, and became the base for an internal reuse library that
has benefited many projects since then. (Adams 1992c, p. 3)

66 See Tirso (1991), Ryan (1991), and Harris (1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

151

Among the statistics that Knowledge Systems Corp. kept during their work for

Hewlett-Packard was an estimate of reuse savings. Adams reports that "[t]he savings

often exceeded the actual cost of the project, indicating that much more

functionality was delivered for the same cost."

Note also the evolutionary cycle of ongoing development that Adams points out.

Components designed in the initial project were then improved on being reused in

subsequent projects. The new, improved versions were then reincorporated into

the first system.

5.3. Generating economies of scope

Most programming today still occurs within what Meyer calls a project culture, in

which a specified project "starts at day one with, as its input, some large user's

specific need. It ends some months or years later with a solution to that need ..."

(1990, p. 76) When software development organizations move out of the project

culture and begin to take advantage of software reuse, they can achieve significant

economies of scope. (Teece 1980; Lavoie, Baetjer, and Tulloh 1991b) Component

availability simplifies producing related functionality, typically related programs

within the same problem domain. Reusable frameworks at a high level of

abstraction are especially powerful, for these frameworks can form the basis of a

family of related applications.

One kind of high-level reusable framework is an enterprise model. Sam Adams

describes enterprise modeling as "the process of developing a software model that

encompasses the nature of the business enterprise itself, its behavior, environment,

and rules." With enterprise models,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

a common reusable framework is designed for an entire class of
applications. The functioning enterprise model becomes the reusable
backbone for various applications across the enterprise, greatly reducing
the complexity and redundancy that is so common in today’s legacy
systems. (1992c, p. 4)

High-level frameworks of this kind can potentially yield tremendous gains. (Of

course the gains come at a cost. Finding the appropriate abstractions is challenging.

As Sam Adams says, ” [t]his level of reuse ... does not come cheap.") High-level

frameworks bring forward the starting point at which programmers begin new

projects, and facilitate communication and coordination among both the producers

and the users of related software products. As frameworks become more

widespread and generally used, the economies increase. At present, this kind of

reuse is at best found within a few firms. But as component markets develop, we

may find these kinds of economies stretching across whole industries.

5.4. Reducing what programmers need to know

A consequence of widespread reuse w ill be programmer specialization and division

of knowledge; as available components embody an increasing variety of design and

domain knowledge in convenient, ready-to-hand fashion, the software industry will

see ever more of the sharing of expertise across time and space that we saw in

Chapter 1 to be a hallmark of economic development. Programmers will need to

know relatively little about the components they use. In particular, they should

need little knowledge of the implementation of established components. Their

knowledge and expertise would instead concern the components' behavior - how

to use them for various purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

For programmers, the availability of a host of excellent components embodying a

great variety of functionality means not only that they do not have to rebuild the

functionality themselves, but that they do not even need to be able to do so. They

need not even think about how those components work, but only what they do.

They are thereby freed to contribute their own special talents, insights, and

capabilities to the growing body of programming knowledge. Through software

capital markets - component markets, whose anticipated advent we take up in the

next chapter - they are able to take advantage of, and contribute to, an extended

and extending order of social cooperation (Hayek 1988) among programmers.

5.5. Improving code dependability

Component use tends to decrease debugging time, as components become more

dependable and error-free. As components are repeatedly put to the test in a variety

of uses, their capabilities become known, and less debugging time is required. A

programmer using code from a well-managed corporate library of reusable

components should be able to do so with great confidence, knowing that only

proven components are admitted into the library for general use.

The very techniques that make for good modularity also enhances trustworthiness.

As we have seen, one of the principles of good object-oriented programming is to

keep the individual elements simple, and easy to comprehend all at once. Another

is to use small interfaces. The encapsulation provided by object-oriented languages

also contributes to dependability. While encapsulation does not guarantee the

dependability of the encapsulated component, of course, it does improve the

likelihood that any problems that arise will be localized and easy to find. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

principles, while fostering reusability, contribute to code trustworthiness at the same

time.

Present software reuse yields significant benefit to firms that take advantage of it.

Component technology in a market setting should yield still greater benefits. While

components are increasingly shared and reused within firms, there is still little reuse

across firm boundaries. To economists sensitive to the powers of markets to

discover and communicate knowledge, the prospect of component markets is

exciting. Reuse within a market setting will yield enormous productivity gains, by

disseminating widely the most effective technology. This prospect is the subject of

the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Evolving the Capital Structure:

Markets for Software Components

Saw the heavens fill with commerce, argosies o f magic sails,
Pilots o f the purple twilight, dropping down with costly bales;

- Tennyson, "Locksley Hall"

Economics has from its origins been concerned with how an
extended order o f human interaction comes into existence through
a process o f variation, winnowing and sifting far surpassing our
vision or our capacity to design.... Modern economics explains
how such an extended order can come into being, and how it itself
constitutes an information-gathering process, able to call up, and
to put to use, widely dispersed information that no central
planning agency, let alone any individual, could know as a whole,
possess, or control.

- F. A. Hayek67

1. Introduction

In this chapter we take a different perspective on the nature of capital structure

development. We move beyond what we may call social learning in the small -

the learning necessary to develop and evolve particular capital goods - to consider

what we may call social learning in the large - the development of new institutions,

understandings, and practices that support the capital structure and allow it to grow

67 (1988, p. 14).

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156

more rapidly. In particular, we look at the prospect of markets for software

components. (Cox 1990 and 1992; Lavoie, Baetjerand Tulloh, 1991b and 1992)

Many believe that increasing software reuse within particular firms will boost

significantly the productivity of those firms, in time to market, quality,

maintainability, and range of products offered. Even if these hopes come to be fully

realized, those productivity gains may be only the embryo of the benefits possible

for software reuse. Far greater gains w ill result when and if reuse is extended across

firms through component markets. Improvements in modularity, and especially

object-oriented technologies - go a long way to make possible vigorous markets for

software components. Interestingly, while object technologies clearly make

component markets possible, this seems to be an unintended consequence; most of

the designers and developers of object technologies have had other things in mind.

Extensive software component markets, on the verge of which we seem to stand

today, should enhance social learning and therefore wealth creation in a number of

ways: Markets w ill make possible a dissemination of the knowledge embodied in

software components far beyond what is possible in the absence of markets. Also,

markets should support a more rapid development of new knowledge of this kind,

through extending the number and diversity of people involved in the learning

dialogue, and through extending the dialogue deeper into the structure of

production.

In order for software component markets to flourish, however, more social learning,

in the form of development of supporting institutions and attitudes, is necessary.

The most significant needed change, which we take up in detail in section 4 below,

appears to be improved means of pricing components, based on new property rights

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157

institutions. The very characteristic of software which makes it so suitable for this

study - its being primarily knowledge, largely independent of physical embodiment

- has made software problematical for those who produce it. Software can be

copied at almost no cost, into other machines, onto diskettes, over networks. For

smaller units of software such as small-scale software components, this presents a

real problem: it is very difficult for the producers of such components to be paid

adequately for the benefits they offer; it is too easy to get a copy of a component

without paying for it. Accordingly new means of establishing and securing

property rights in software need to be developed.

Also standards must be evolved to improve complementarity of different

components. New means of distributing software will have to be developed and

accepted. All these changes will require cultural shifts. And of course, all these

changes will impact one another: components, component markets, and the

institutions that support them will co-evolve.

The development of component markets, then, w ill be a matter of social learning in

the large, not constrained to the limited settings we have considered thus far, of

certain clients, designers and single software applications into which their

knowledge is built. Our context in this chapter is the software industry as a whole,

(overlapped as it is with many other industries, of course). As software systems

embody and re-present in useful form a large amount of knowledge from many

people, far exceeding what one person could know, so likewise the systems of

interaction we know as markets embody and present to us in useful form a great

and various (and evolving) body of knowledge. As the development of software is a

social learning process, so also is the development of software component markets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

2. Component markets as an unintended consequence of improved

modularity

"For want of a nail, the shoe is lost; for want of a shoe, the horse is lost; for want of

a horse, the rider is lost," writes George Herbert.68 Small developments can have

great consequences. This seems to be the case, though in a happily positive

direction, with object technology. Object-oriented programming languages were

developed initially to facilitate computer simulation and to empower computer

users to accomplish their various purposes better. (Goldberg 1981) As we have

seen, over time object-oriented technologies have been recognized as useful in

enabling rapid product development, reducing maintenance problems, and

facilitating code reuse. Aside from a few far-sighted individuals however, few have

seen clearly that improved modularity through objects has still another benefit to

offer: the potential to revolutionize software development, by enabling thorough

going specialization and division of knowledge, mediated by markets. (Lavoie,

Baetjer, and Tulloh 1992) The attention now being paid to reuse, and to

constructing well-defined software assets suitable for reuse within a firm (Adams

1992a) inevitably leads in the direction of component markets, because the more

understandable and complete is some software component, the more likely it is to

be desirable to users outside the firm in which it is developed.

Component markets were possible before the development of object-oriented

technologies only to a very limited extent, because previous technologies involve

68 lacula Prudentum. 499.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

too many interdependencies: previous "components" have rarely been truly

separable and independent. Previous technologies do not facilitate what Meyer

calls modular composability and modular understandability. With the

encapsulation of data and functions that objects provide, however, it is possible to

build "computers within computers," units of functionality that make sense on their

own, and can be incorporated into a variety of different systems. With this

capability, it is now possible to produce meaningful units of functionality that can

be combined in a variety of ways. These meaningful units of functionality are

sellable units, providing, of course that the problem of property rights and pricing is

solved. Hence distinct software modules make possible markets through which

they may be widely disseminated, and thereby free programmers from the need to

redevelop such functionality on their own.

When and if software component markets develop, they w ill constitute a significant

further enrichment of the complex pattern of complementary relationships that is

the capital structure. Complementarity continues to be of the essence: the new,

finer-grained elements of the software capital structure must work with one another

to be valuable (and hence to be capital). In the market context, however,

complementarity w ill be mediated more by market forces than by direct planning,

as it is within a firm or project. Whereas within a given project, one might ask,

"what does the interface of this object need to be, so as to fit with the objects my

colleagues are building?", in the market context one needs to ask, "what does the

interface to this component need to be, so as to fit with the conventions and

standards that are evolving in the marketplace?"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

In the present context, then, we are looking beyond the learning necessary to build

a software system successfully, at the learning necessary to develop the social

system - the market, what Hayek called the extended order of human cooperation -

so as to achieve a general increase in wealth.

3. Learning through markets

Extensive component markets w ill yield important benefits that w ill transform

programming practice for the better. The transformation w ill be profound.

Consider the current state of division of knowledge in the software industry: almost

everything except the development tools is built internally. In many cases,

programmers literally begin with a blank screen. This is equivalent to a building

contractor's being asked to build a new house, and beginning by going out to the

forest with a chain saw to cut lumber for two-by-fours and roofing shingles, and

digging in the ground to mine iron from which to cast the bathroom fixtures. The

contractor may use tools bought from elsewhere, but he produces all his materials

himself. This picture seems to us absurd and wasteful. But there was a time not

long ago when homesteaders did exactly this. Only the development of widespread

markets for housing components has made possible our present division of

knowledge and labor with their multiple stages of production, and the efficiencies

and higher quality that result.

Of course, with intra-firm reuse, the picture improves. It roughly parallels a

situation in which the building contractor has certain grades of lumber and wrought

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

iron on hand from previous jobs, which can be incorporated into new buildings

with little or no adaptation.69 This is a great advantage. Nevertheless, it falls far

short of what that can be achieved through extensive specialization and division of

knowledge made possible by market relationships, in which two-by-fours, roofing

shingles, bathroom fixtures and the rest of the materials are built by specialists, with

the house builder specializing in assembling the parts to specification.

Software component markets offer this kind of extensive specialization. They

promise a number of benefits in generating and making good use of the knowledge

that exists in the software development community, but which is in large part

trapped within particular firms. More important, they promise to elicit a vast

amount of additional, latent knowledge that will be forthcoming when there are

market structures to support its discovery and exploitation. Almost undoubtedly,

again providing that the pricing and property rights issues can be resolved, there

w ill come a time when the structure of production of software is just as specialized

as that of house-building, and we will look back on present practice as just as

primitive as the house-building practices of the old frontier.

3.1. Knowledge dissemination

One of the most obvious benefits of component markets is that they will allow a far

greater number of software builders to take advantage of any particular body of

69 Of course the analogy is not perfect. Software products are not perishable, so
once you have built a software two-by-four, you always have that item available.
The challenges to software reuse have to do with such matters as locating,
understanding, adapting, and testing the component, all with enough ease that it is
simpler to reuse than to rebuild.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

embodied knowledge that may be offered for sale. Market incentives w ill

encourage component vendors to find those development organizations that need

the components they can provide. Instead of being stuck within the confines of a

single firm, reuse can spread across firms. What has once been accomplished well

need not be replicated, not within the firm that accomplished it, nor any other firm.

Of course there w ill be trade secrets, and often firms will choose not to release the

components they have developed for sale to the general public. But as long as any

given kind of functionality is generally needed, there will be an incentive for some

independent component supplier to try to produce and market it.

3.2. Specialization

In considering the benefits of internal reuse in the last chapter, we mentioned that

reuse should reduce what programmers need to know, and, in freeing them from

reproducing functionality, allow them to devote their attention to developing new

functionality. In short, component markets w ill allow programmers to specialize

more. Some may specialize on building components, some on assembling

applications with those component.

This division of knowledge and labor itself improves learning, because specialists

are able to develop a more thorough understanding of and expertise in their chosen

problem areas. One of the great challenges of writing good object-oriented

software is drawing the best possible abstraction boundaries between the different

elements of the system being modeled. It can take a long time to develop enough

familiarity with a particular problem area to discover how these abstraction

boundaries had best be drawn. Specialization will allow this kind of learning and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

163

discovery. Under present conditions in industry, with software being applied to

ever more particular and specialized functions, this kind of specialization would

seem to be a great benefit, because much of what the programmer needs to

concentrate on is not programming skills as such, but the detailed and changing

needs of the field for which he is writing software.

One kind of knowledge we would expect component specialists to build into the

components they market is the knowledge of what kinds of customization will be

needed for their components, and how to make that customizing easy for the down

stream programmers who w ill incorporate the components in specialized

applications.

3.3. Information hiding through separating the stages of production

In discussing modularity above, we spoke of one of the benefits provided by

information hiding: it prevents programmers from concerning themselves with how

an object is implemented, and thereby from introducing any problematic

dependencies based on that implementation. They know only what the interface is,

and what services that object provides. With the evolution of increasingly distinct

components built to be used in different stages of production, we have something

similar to information hiding, and potentially more powerful in improving the

quality of software development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

164

George Bosworth, the chief technical officer of Digitalk Corp., points out that at

present, virtually all programming is done with the same set of tools.70

Programmers do the same kinds of things with the same kinds of tools whether they

are writing a small algorithm or a large application: they read and write code. In

most cases, almost all the code is directly available to them. This, Bosworth

suggests, is a problem. Reuse w ill happen when the techniques used to reuse the

components differ from those used to build them. He holds that for programmers to

be able to see the code of the components they are using is problematic. It draws

attention to how they were built, and away from how may they be used.

(Additionally, it makes possible the perilous business of revising and "improving"

those components, whether consciously or inadvertently, with all its problems of

introducing inconsistencies and bugs, and violating the expectations of other

members of a programming team.)

With this kind of idea in mind, Digitalk has built a product called PARTS, the Parts

Assembly and Reuse Tool Set. PARTS offers a platform for truly distinct stages of

software production. With PARTS, the user of a particular component does not and

cannot see how it is built.71 Thus the user's focus is necessarily on what he or she

w ill use it for. Irrelevant detail is suppressed. The user assembles applications

using the PARTS Workbench, by linking various components together visually on

70 Personal interview, November 1991. I am indebted to Mr. Bosworth for my
appreciation of this point, and my understanding of its importance.

71 This is known as a black box component. While there have been black box
components available in other settings before, including reuse programs in large
firms (Tirso 1991, Harris 1991, Prieto-Diaz 1991), Digitalk's PARTS is the most
important commercial platform for black-box components to date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

the screen, occasionally dealing with a limited amount of code. Digitalk is actively

encouraging third-party developers to build a variety of components for the system,

offering all sorts of special functionality, which w ill then be available for sale to

other users of the PARTS Workbench for assembly into applications.

The development of PARTS and other systems like it may stimulate an important

step in the evolution of the software industry: the development of a new stage of

production. This stage is suggested by a minor confusion in the terminology being

used to discuss PARTS. Up until now, one has been able to communicate fairly

clearly speaking only of programmers and of users. Programmers were those who

build software. Users were "end users" - the people who make use of the software

applications. The limited terminology suggests what is largely true - software

applications are built at a single, very complicated stage of production. Or rather,

given that the work of translating the finished code into machine language is done

by compilers at a separate stage in the process, we may say that applications are

built in two stages.72

But in a recent article discussing PARTS (Bosworth 1992), when George Bosworth

speaks of users he does not mean end users. He means those who w ill (re)use

PARTS components in assembling applications. This is programming, although of a

different sort than what we are accustomed to, since programming with PARTS

mostly involves visual tools rather than coding, and since one who programs with

PARTS is equipped with a new and rich sort of working capital, ready at hand.

72 Of course the compilers in many languages operate automatically, without
human intervention; that is, at the compiling stage human programmers are present
only in the form of their knowledge, embodied in the compilers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

Hence in this context we have three kinds of programmers: those who build

compilers and programming languages, those who build components, and those

who use components to build applications. We might expect that as the trend to

component markets and component assembly systems such as PARTS continues,

new terms w ill evolve to capture the distinction.

O f course this division of software production into stages of production can

potentially go on a long way, with small components being built into larger

components, and these into still larger components, in an indefinitely long

progression. Indeed, the PARTS Workbench provides the capacity to build new,

larger units out of a combination of smaller PARTS (Digitalk calls them nestparts or

subassemblies), and treat these new entities as separate, independent PARTS.

Presumably, we can expect this division of labor and knowledge to be limited, in

the end, only by the extent of the market, and the market w ill be very large indeed.

It may be that we are seeing the beginning of another transformation of what it

means to program, similar to the shift that occurred when higher-level languages

were built which could automatically do the low-level "programming" into machine

language. Perhaps, with the embodiment of a wide variety of programming

knowledge in a broad selection of readily available and easily combinable software

components, virtually everyone may become a programmer. There was a time

when telecommunication was demanding - only trained telegraph operators could

effectively communicate with one another across long distances, because the

available tools required special knowledge to operate, and communication had to

be in Morse code. But in time better, handier capital goods for telecommunications

were devised. In particular, the telephone was invented. Now everyone may be a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

telecommunicator, simply by speaking into a telephone, whose use is natural, easy,

and almost self-evident. There seems to be no reason why "programming" should

not become as easy, as we learn how to build the requisite knowledge into better,

handier programming tools. As telephones let us move from telecommunicating in

Morse code to telecommunicating in natural language, new programming tools may

let us move from programming in code to "programming" in natural language.

3.4. Market learning

A crucial benefit that component markets w ill give software is more extensive and

detailed market learning. As Hayek has pointed out, the market process is a

discovery procedure (1978) through which market participants may learn what is

needed and wanted, what is available, and where opportunities lie. Of course all

we have discussed to this point assumes a market context. The point is not that

component markets w ill add something different, but that they w ill extend market

processes more deeply into the software development process, and thereby deepen

and enrich the learning that can occur.

Obviously market feedback drives software development. The public's desire for

certain features in word processing or spreadsheet packages - whether registered

through direct praise, complaints, published reviews, or simply changes in market

share - directs the subsequent development of the applications. The same kind of

thing is true even with large applications built in-house for large firms. The users of

the application are in effect the customers of that firm's programming team that

builds and maintains the application, and the users' satisfaction or dissatisfaction

with performance and features will shape what the programmers do next. This

iterative, back and forth sequence of the software maker's offering a new release of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

the product, and the public's responding to it with market feedback, is another

instance of the dialogue-like process we saw occurring with prototyping. It is an

important source of knowledge about what is needed and wanted: the knowledge

gained can then be embodied into the next release of capital goods in question.

An especially salutary aspect of this process is the knowledge generated by the

multiple experimentation that occurs with competition. In a competitive

environment, different providers try different solutions to a problem, essentially

offering them for approval to their customers. The better solutions tend to become

known and widespread. Furthermore, the very variety of attempts is suggestive of

what else may be done: sometimes failed attempts give the observers ideas as to

how some aspect of that attempt might be successfully used. With competition also

comes an added dimension to the dialogue between providers and customers; that

is what A.O. Hirschman calls exit, the option that customers have of simply leaving

the dialogue - taking their business elsewhere. Of course taking this option sends a

strong signal to the providers that they are somehow falling short.

Component markets w ill make all these kinds of feedback finer-grained and more

extensive for the software industry, thereby generating more knowledge in the

system. Not only whole applications w ill be judged and commented on, whether

directly or through exit; but now the component building blocks will be subject to

the same kind of dialogue and discovery. The effect should be to improve the rate

of improvement in the software capital structure at all levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

4. Aspects of component market evolution

While the promise of component markets is great, and while object technologies

make possible the building of reusable software components that may be bought

and sold, some substantial changes must occur in the software industry and the

software development culture before component markets can flourish. (Lavoie,

Baetjer, and Tulloh 1992) These developments constitute social learning in the

large: the evolution of a body of shared assumptions and practices.

4.1. Development of standards

One of the main obstacles to software component markets is the lack of standards.

Even though the different object-oriented programming systems all allow the

construction of reusable and potentially sellable components, in most cases these

components cannot be integrated without an effort far exceeding what it would take

simply to replicate their functionality. A main problem is the incompatibility of

objects built in different languages. Objects built in Smalltalk cannot be

incorporated into a C + + program. Worse yet, there are incompatibilities among

the different class libraries developed for the same language (class libraries are sets

of objects, usually sold as a package, offering a variety of functionality). While

there is a variety of class libraries to choose from if one uses, say, C + +, one pretty

much has to choose, because the libraries w ill not work together. For example, the

same class name might be used in two different libraries for two entirely different

classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

170

Lack of standardization fragments the potential market excessively, thereby

reducing the incentive to develop components for sale.

There are, however, promising developments on this front. IBM is developing what

it calls a System Object Model (SOM), which is intended to allow objects written in

different languages to work together. Not only that, it allows classes of objects from

different languages to be adapted (the technical term is "subclassed") by the users as

needed, without any knowledge of the original language required. Hence the

System Object Model provides a bridge between languages.

Another development comes from the Object Management Group, a consortium set

up to establish standards for sharing components across networks. The Object

Management Group has already established the Common Object Request Broker

(CORBA), a standard for object interaction that is gaining widespread acceptance

among some of the largest software vendors.

Digitalk intends for PARTS, which is built in Smalltalk, to provide the capacity to

"wrap" objects built in other languages. This w ill allow component developers

using other languages to build PARTS components. Also it will allow companies

with a large investment already sunk into components built in other languages to

transform them into PARTS components, which can then interact freely with other

PARTS components.

For any of these different systems to become established as a standard around

which component markets grow, an adequate number of industry participants must

embrace it, learning its virtues and defects, and how it can accommodate their

needs. Importantly, this is a coevolutionary matter: among the most important

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171

things any market participant must learn about an emerging standard is that it seems

to be accepted by others. The network externality here is substantial.

One would hope that a number of different standards emerge. Different kinds of

standards w ill be appropriate for different purposes. Further, the competition

among standards is itself a valuable social learning process. Much can be learned

through comparing the advantages and disadvantages of competing standards for

different purposes.

4.2. Pricing

As we have suggested, even if there presently existed a number of generally

accepted standards for component interaction, markets for components might not

flourish, because current methods of pricing software are probably inadequate to

the special demands of component markets. With today's pricing institutions, it

might be very difficult for component producers to be paid adequately for what they

produce. Software is easy to copy; indeed, the cost of copying a program

approaches zero. Under today's pricing institutions, this fact is a problem

obstructing component markets: a component producer might conceivably build a

valuable component, sell a few copies, and then receive no more revenue, even

though her component is widely copied and widely used. New methods of pricing,

based on new conceptions of property rights to software, w ill need to evolve.

Under appropriate pricing institutions, the ease of copying might be turned to a

benefit for component producers, and accelerate the development of component

markets. Property rights structures continually evolve (Mackaay 1990), and they

undergo significant transformation in response to changes in technology (Palmer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

1989). As technologies develop, the societies using them must learn what kinds of

property rights structures work well.

Vendors of software need assurance that they will be rewarded for the value they

provide others; they need protection of their property rights. At present, this

protection is afforded, imperfectly, by licensing and copyright. Nearly all software

is licensed, not sold. For mass market software, the courts have evolved a system of

shrink-wrap licensing through which, when a buyer breaks the shrink-wrapped seal

of a software package, he is thereby agreeing to the terms of the license. A variety

of licensing arrangements is being developed for use on networks: In some cases

different prices are charged for different numbers of users; in others the network is

equipped with a metering system that allows only a limited number of uses of an

application at a time, in the manner of a lending library with only a limited number

of copies of a book for check-out. Furthermore, software may be copyrighted: one

may not legally make more than a very few copies (e.g. for purposes of backup)

under the fair use doctrine.

O f course, these legal restraints do not work perfectly. The almost effortless ease

with which software may be copied - a marvelous characteristic from the

standpoint of what it means for the spread of knowledge capital - is, in the context

of present legal and market institutions, a severe liability. Because software is

presently sold by the copy, ease of copying is a problem. "Piracy" - illegal copying

of software - means lost revenues to software producers, and hence a reduced

incentive to produce it. The problem is worse with software components: because

they are smaller and less expensive, it is more difficult to detect the copying of

them, and it is uneconomical or impractical to secure revenues by such strategies as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173

bundling them with documentation or the promise of upgrades. There is also the

problem that incorporation of too many third-party components into an application

can push its price too high: Each component vendor, fearing copying, may be

induced to charge a fairly high per-copy royalty on his component. The application

vendor must of course cover these costs in the price of his application. It is easy to

see that incorporation of too many high-priced components can price the

application out of the market altogether. Hence application vendors have the

incentive to rebuild functionality rather than buy it.

Some have suggested, persuasively, that adding a new, substantially different kind

of pricing option can greatly facilitate the emergence of component markets. (Miller

and Drexler 1988b, Cox 1992) This approach is to allow users to pay for software

by the use rather than by the copy. It is known as charge-per-use, pay-per-use, or

superdistribution. (Mori and Kawahara 1990) Under a charge-per-use system, a

meter of some kind in the underlying operating system would keep track of how

much certain software and software components are used,73 and the user would be

charged accordingly. Some means (there are a number of alternatives) would have

to be settled on for ensuring payment, which would probably be handled on a

monthly or quarterly basis through a clearinghouse, which would distribute

payments to the different vendors. (The statement could detail usage for the

customer in the manner of a telephone bill.)

73 How usage might be defined is an interesting question. Some vendors might
charge by time of use, some by number of uses, etc. The different methods can
coexist. Presumably market experimentation will reveal which techniques are best
attuned to which circumstances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

Charging by use rather than by the copy allows vendors of software and software

components to segment their markets on the basis of their customers' intensity of

use. Occasional use of a very expensive program would become feasible under

charge-per-use, and vendors would have a better chance to be paid by intense users

in accordance with the value they actually receive from certain applications.

By providing a technological means of ensuring payment, charge-per-use eliminates

many of the current problems of enforcing contracts by monitoring and by legal

procedures. Indeed, in a charge-per-use system users would be encouraged to copy

their software freely and distribute it widely, to friends, co-workers, and others.

From the standpoint of component markets, charge-per-use has the great advantage

of giving component producers reasonable assurance of payment. Freed from the

worry that components they build w ill be illegally copied and widely used, with

little reward to themselves, potential producers of components are likely to become

actual producers of components. For the same reason, component producers would

feel free to charge, for use of their components, only a small fraction of what it cost

them to build those components; they would reasonably expect to be paid for their

effort incrementally over many uses. This low per-use price of the components

would in turn mean that prospective users of those components would be willing to

incorporate a number of third-party components into their own applications,

because doing so would not drive up the per-use cost of their applications too

much.

There is an important social learning advantage to charge-per-use. That is, the

underlying system would be able to collect extensive valuable information about

the nature of usage. Figuratively speaking, it would allow the market dialogue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

among vendors and users to be more rich and detailed, so that they may come to

understand one another better. This finer-grained market feedback would inform

subsequent software development, resulting in lower costs to producers, and better

quality to users. At present, application providers do not have much information

from their users as to what aspects of those applications are used the most, or most

valued. But with a charge-per-use system, application and component developers

could gather detailed information of this kind. They would then have a better idea

which modules to enhance first, which modules to deemphasize, which to improve

in performance, etc. Significantly, because different users use applications in

different ways, detailed usage information would make it possible for vendors to

customize particular versions to the needs of different customers (somewhat in the

manner that telephone companies today offer different packages to users with

different intensities of use). It would not even be necessary for particular users to

know which version of a software application they are using; the vendor could

simply monitor their use, and customize their packages accordingly.

Privacy issues arise with this technology. Some may not want anyone to know how

much they use different (parts of) software applications. Encryption technology

exists, however, for allowing precise data to be collected, charges made and royalty

payments paid, without anyone being able to tell who used what. Accordingly,

those who wanted privacy could have it. On the other hand, many w ill probably

want the advantages that come from their software suppliers having good

information about their usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

4.3. Distribution channels

Software component markets w ill require new distribution channels. Current

software distribution channels, generally expensive and aimed at the mass, end-user

market, are ill-suited to components, which require inexpensive channels aimed at

developers and sophisticated end-users. A small-scale software component, for

example, that may sell for, say, $80 to each of a thousand potential users

nationwide, cannot afford $100,000 worth of packaging, marketing, and distribution

costs. The industry needs to develop affordable means by which producers can

easily distribute their components, and users can easily access them.

Fortunately, complementary technologies are being developed. In particular,

electronic distribution seems very promising, especially if charge-per-use is enabled.

Components may be easily loaded onto telecommunications networks, and

downloaded by potential users at very low cost. On-line cataloguing of

components can lower the costs of communicating what components are available

and what they do. Additionally, electronic marketplaces can reduce the transaction

costs of buying and selling components through electronic payment and

maintenance of accounts.

In January of 1992, an electronic marketplace providing the above services came

into being. The American Information Exchange (AMiX) opened an electronic

market for software components and consulting.

Components can be inexpensively stored on the system and downloaded
by buyers for immediate use. To facilitate custom development the
system supports small-scale consulting with negotiation, contracting, and
delivery on-line. AMiX handles all billing and accounting centrally,
freeing market participants from accounting overhead. On-line charges

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177

are at cost, and in any case the system allows users to do most of what
they need to do from their local image of the system, connecting only for
short periods. (Baetjer and Tulloh 1992)

An alternative means of low-cost component distribution is CD-ROM (compact

discs containing read-only memory). This technology allows very inexpensive

distribution of vast quantities of information.

4.4. Cultural shifts

All of the technology necessary to support charge-per-use software markets exists.

The advantages of such markets are arguably great. Why, then, do we not have

charge-per-use markets. One important reason is that while such markets are

familiar to our culture - we buy telephone service, electricity, some television,

water, etc., by the use - there is resistance to charge-per-use in some parts of the

programmers' subculture. Cultural shifts in general are an important aspect of

market evolution. A shift in culture constitutes a significant amount of learning

about shared expectations.

Regarding charging per the use of software, rather than per the copy, there is the

particular difficulty that it reminds some programmers of the "bad old days" of time

sharing, when they were charged for scarce, precious computer time. Those who

believe charge-per-use software to be a return to time-sharing need to be reassured

that this is not the case. Charging per use need only be an additional pricing

option, fully compatible with pricing per copy, which will not disappear. Those

who advocate charge-per-use must propagate their ideas widely, explaining how it

can work and what its advantages are.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

An important cultural shift that would seem to contribute well to the prospects for

software component markets is a change in the style of teaching in software

engineering schools. Commonly, students are taught to approach problems from

scratch, devising their own solutions to problems that have been solved by hosts of

other students and practitioners before. While this sort of practice has its place,

students of software engineering also need to be taught the benefits of software

reuse, encouraged to make use of industry-standard components, and trained to

make use of the prior work of others. In this respect, the software engineering

schools would do well to start their students with object-oriented programming as

the current best style of programming, instead of teaching introductory courses with

traditional languages and then introducing object-oriented programming as

something new and out of the mainstream. Once one has learned traditional

approaches to programming, it is more difficult to change one's mindset to the

object-oriented way of thinking. There is no point to teaching students bad habits,

and then asking them to unlearn them. As industry moves more and more to object

technologies, we can expect this shift to occur.

Whether in the schools of software engineering or in practice in industry,

programmers need to overcome their disposition to build for themselves rather than

incorporate the work of others. In like manner, they need to build their own code

with a conscious eye to that code's reuse by others, making it clear, understandable,

modular, and well-documented.

One of the most important cultural changes needed is a matter of management and

business practice. That is, the single-project mindset must be rejected. Software

developers must view what they do as producing not a succession of isolated,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

independent projects, but a family of related projects with a great deal of common

functionality. This w ill necessitate a change in accounting: the costs of developing

reusable assets must be spread over many projects; the practice of budgeting each

project in isolation from others must be given up. Along the same lines, software

development contracts must not be written as they often are today, with payments

for development milestones that take no account of reuse. Managers today, with

such specific milestones to meet, are understandably unwilling to permit the

development of reusable objects, if doing so puts them over budget on the project

for which they are responsible. High-level management must recognize that

developing reusable software assets is an investment in future productivity that

deserves their support.

5. Summary

The possibility of widespread markets for software components is a consequence,

mostly unintended, of the improved modularity of software made possible by object

technologies. Component markets would foster a substantial enriching of the

capital structure, with greater specialization, division of knowledge, and resultant

embodiment of useful knowledge in working capital for programmers - software

components. Truly separating different stages of production of software would also

foster specialization, and allow those who build applications by composing various

components to focus on the problem at hand, unconcerned with how the

components they are using were built. Component markets would extend the

benefits of market feedback and market learning beyond whole applications to the

components of which software is built.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

For component markets to emerge, however, a significant amount of social learning

is necessary. Standards must be evolved to enable disparate objects to work

together. Better distribution channels, such as electronic marketplaces, need to be

developed and used. New property rights structures and pricing methods must be

developed to take into account components' small size, ease of copying, and

potential composition in large numbers into final applications. Charging by the use

rather than by the copy is a promising possibility. To support the emergence of

component markets, a variety of cultural shifts is necessary also, on the part of

programmers and managers. They must come to accept widespread reuse, with its

implications for sharing one another's work and developing with a series of projects

in mind.

Once component markets have evolved, what might the next major development

be? (We would not expect the evolution to stop, of course.) Miller and Drexler

(1988b) discuss a fascinating possibility. They suggest that through encapsulation,

objects give programming the same kinds of benefits that property rights give

economies. Why not, then, seek to incorporate more aspects of markets into

programming systems? They suggest the further market-oriented development of

constructing objects which bid for one another's services in, thereby giving

programming the benefits of price information about relative scarcity. Such systems

would probably be self-contained at first, with the different objects in a program

negotiating with one another in terms of an internal, virtual currency. But with

charge-per-use implemented across a network, there would appear to be no reason

why an object on my machine should not be able, eventually, to bid for the services

of objects (and other computational resources such as CPU time) on other

machines. Such distributed, market-based systems of computation are what Miller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

181

and Drexler call "open agoric systems." Their implications, not least for very rapid

market-based discovery, are profound indeed. (Consider: properly programmed

objects could carry out a large number of lengthy, multi-party price negotiations in

microseconds.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Conclusions: Implications for Economic Development
and for Growth Theory

N o t in vain the distance beacons. Forward, forward let us range,
Let the great worlds spin forever down the ringing grooves o f

change.

Through the shadow o f the globe we sweep into the younger day;
Better fifty years o f Europe than a cycle o f Cathay.

- Tennyson, "Locksley Hall"

1. Introduction

In this brief concluding chapter we broaden the perspective greatly, and consider

the implications of our findings to the economy as a whole. What are the

implications of what we have discovered about software development for the

development of the economy as a whole? And what can that tell us about

economic theory? Before turning to these questions, we need to establish the

applicability of the concepts we have been discussing to tools in general - hard

tools as well as software tools.

2. Applicability to hard tools

We chose, in this inquiry, to focus on software development, because with software

the knowledge aspects of capital goods are so immediately apparent, and the

physical aspects are so much in the background. This has allowed us to focus on

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

capital goods as embodied knowledge without being distracted by steel and glass

and silicon and ceramics, and the important challenges of embodying design

knowledge in those physical substances. In this section we verify that the issues of

social learning and system evolvability, which we found to be crucial in software,

are also fundamentally important in hard tools. The same issues apply whether we

are talking about designing and producing a new word processor or a new hammer.

2.1. Prototyping and social learning

The key concept we explored in Chapter 3 is that the development of new capital

goods is a social learning process. It is a learning process because it is a matter of

embodying knowledge, and it is a social process because it calls on the knowledge

of a variety of people, which is embodied in a form that is available for shared use.

The knowledge is dispersed, incomplete, and often tacit. The proof of the point we

found in the nature of the processes and tools used in initial software development.

Chief among these are rapid prototyping and a variety of tools and methodologies

for managing the complexity of the design process. Do we see the same kinds of

processes and tools used in the development of hard tools?

We do. Prototyping is particularly important in manufacturing. Steven

Wheelwright and Kim Clark address the development of physical goods in their

recent book Revolutionizing Product Development. (1992) They argue that

...prototyping and its role in design-build-test cycles is a core element of
development and a major area of opportunity for managements seeking
to improve the effectiveness and efficiency of their development process.
(p. 260)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

184

They focus in particular on "[increasing the rate and amount of learning that occurs

in each cycle." (p. 260, emphasis added)

New, computer-driven devices for the rapid prototyping of physical tools and parts74

are being employed to great advantage by auto makers, aerospace companies, and

tooling companies. (Chaudry 1992) These new prototyping tools are much faster

and less expensive than conventional techniques, providing more rapid and

frequent feedback to designers and prospective users.

The purpose of prototyping hard tools is the same as for software: to elicit

information from the different people whose (often tacit) knowledge can contribute

to the design process.

Because even simple prototypes can convey substantial amounts of
information, they serve as a bridge between individuals and groups with
very different backgrounds, experiences, and interests. Thus
management can use prototypes to gauge, share, and extend
organizational knowledge. (Wheelwright and Clark 1992, p. 274)

As with software prototypes, physical prototypes serve as the vehicle for dialogue

through which new knowledge is elicited and understood by the various

participants:

The physical object represented by the prototype becomes the vehicle
by which different contributors can focus and articulate their concerns

74 These devices use such techniques as hardening liquid polymer with an
ultraviolet laser. The laser is guided by computer-automated design (CAD) drawings
of a series of cross-sections of the tool to be modeled. Layer after layer is deposited
as a computer controlled lift lowers the emerging model into the liquid. Models
can be used as the prototypes themselves, or as molds from which the actual
prototypes are cast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

185

and issues, and reach agreement on the best ways to resolve conflicts
and solve problems. (Wheelwright and Clark 1992, p. 273)

The physical nature of the prototype makes it more understandable to those whose

own knowledge of it is more tacit than articulate. Communication through a

prototype often succeeds better than communication through symbolic

representation: Through rapid prototyping, Alcoa has not only shortened its

manufacturing review process substantially, but also has "minimized mistakes

caused by misinterpretation of manual drawings and prints and miscommunication

of design details." (Chaudry 1992, p. 78)

2.2. Modularity and evolvability

In Chapter 4 we explored design evolvability through modularity. Not surprisingly,

modularity is very important in the design of hard tools also. A concept currently

important in the engineering literature is "design for manufacturability"75 (DFM), in

which modularity and component assembly are important. The design for

manufacturing literature discusses specific modularity issues closely related to those

we saw raised by Bertrand Meyer. Design for manufacturability addresses

understandability (regarding, e.g., whether a part is symmetrical or not) and the

nature of interfaces (ideally they should be simple enough so that parts fit or snap

together and assembly tools are not required). Another important issue is

standardization, for precisely the same reasons it is important in software: standard

75 For representative work, see Shina (1991) and Suh (1990). "Knowledge-based,
object-oriented" computer-automated design systems and their use in design for
manufacturability are discussed in Belzer and Rosenfeld (1987), and Cinquegrana
(1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

186

parts are easier to reuse in different, but similar designs; they are more reliable

because tested in a variety of uses; they are less expensive to use because they do

not need to be tested; and they are more likely to be reused rather than replicated

because they become generally known. (Kamm 1990)

While the design for manufacturability approach generally stresses the importance

of modularity to the manufacturability of particular, single products, Wheelwright

and Clark take pains to establish its importance to what they call producibility as

well. What they mean by producibility is what we have been discussing as

evolvability. They urge manufacturers to think beyond designing single products,

and think instead of "an approach to design that comprehends the product family as

a whole." (1992, p. 237)

Given increasingly fragmented markets and the need to offer specialized
products that meet the requirements and demands of increasingly
diversified customers, [manufacturers] need the capability to produce a
high variety of products at low cost. Moreover, [they] need to be able to
respond effectively to shifts in the product mix that occur from time to
time in unexpected ways. (1992, p. 237)

In the terms we have been using, any design or family of designs w ill have to

evolve as conditions change, and what changes w ill occur is uncertain. Therefore it

is well for the designs to be evolvable. And evolvability, in hardware as well as

software, depends on modularity of design. Wheelwright and Clark speak in

familiar-sounding terms:

In the case of our gear design problem, a firm using modular design
would not design a new automatic rewind system every time it brought
out a new version of a particular camera. Instead, the project to develop
the platform product would include an effort to develop a new rewinder
and a new gear system that designers would use in several future
versions of the product. Engineers working on the platform would
design the rewinder to fit a given space constraint and would establish

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

187

interfaces (how the parts fit together physically, how control is achieved,
how the users interact with the rewinder) to guide future development
efforts. (1992, p. 239, emphasis added)

The principles we have uncovered with respect to software design, then, seem to be

applicable to hardware design. Again, we have not the opportunity to explore them

in any depth here, but such exploration seems fruitful.

2.3. From modularity to component markets

In Chapter 5 we suggested that the improvement in software development

technique represented by object-oriented languages enables the construction of

reusable software components, and hence lays the groundwork for markets for

components and thence to a new software component industry. Component

markets w ill emerge, we argued, through a substantial amount of social learning, in

evolution of standards, in development of new means of distribution, in changes in

cultural attitudes and practices, and, probably most important, in the development

of new approaches to pricing and property rights in software. We argued, further,

that this new industrial structure, with an increasing number of distinct stages of

production, would make possible significant social learning about what sort of

software is needed, and by whom.

Clearly the development of modular systems has followed a similar course in a

number of industries that produce hard tools. Richard Langlois and Paul Robertson

have documented the evolution of modular systems in the stereo component and

microcomputer industries. (Langlois 1990, Langlois and Robertson 1991, Robertson

and Langlois 1992). Development of distinct modules did lead to markets for

components; these markets depended for their vigor on establishment of standards;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

188

new channels of distribution evolved. And Langlois and Robertson point to clear

benefits of this evolution:

We argue that [modular] systems offer benefits on both the demand side and the

supply side. Supply-side benefits include the potential for autonomous innovation,

which is driven by the division of labor and provides the opportunity for rapid trial-

and-error learning. Demand-side benefits include the ability to find-tune the

product to consumer needs and therefore blanket the product space more

completely. (Langlois and Robertson 1991, p. 2)

The pricing and property rights issue appears to be fundamental in software, and an

area of real difference from physical capital goods. Markets for capital goods, and

the benefits they confer, depend on entrepreneurs' ability to buy and sell the capital

goods successfully, with producers capturing in profits some of the benefits they

provide. Software is very different from physical capital goods in being mostly

knowledge, easily distinguishable and separable from the physical media and

computers in which it may be loaded. The peculiar nature of software as a hybrid -

neither pure knowledge nor hard physical good - means that it cannot be bought

and sold in the manner of nuts and bolts, computer chips, or automobile fenders.

Some new pricing procedure, based on a new property rights arrangement, appears

to be necessary for vigorous software component (capital) markets to emerge. One

possiblity is distributing software widely at no charge ('superdistribution'), and

charging by the use rather than by the copy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

189

3. Implications for economic development: exponential growth?

What conclusions can we draw from this inquiry about the rate, and more

importantly, the potential rates, of economic development, given appropriate

conditions? Because economic development is in large part a matter of the

"complexifying" of the capital structure - the on-going enrichment of the capital

structure as new, ever more specialized knowledge is developed, embodied in

intersubjectively useful form and put to work in coordination with other capital -

because this process is a learning process, and because we show signs of learning

how to learn better,76 in the development of the capital structure there is a tendency

to exponential growth.77

3..1,-Recursion

One factor which seems to point in the direction of exponential growth is analogous

to what computer scientists call recursion. Recursion is a function's making use of

itself, in a kind of a feedback, or perhaps more aptly, feed-forward process. This

kind of feed-forward is commonplace in capital structure development. Consider

76 We even seem to be making progress in learning how to learn how to learn. See
the work of Doug Englebart on augmentation of knowledge (1963).

77 Arguably some parts of the world are experiencing exponential growth even
now. In the long perspective of human history, certainly the pace of change seems
to be accelerating. If we do not see present growth as exponential, perhaps that is
because we are still so far down on the curve that it still looks flat.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

that better steel makes possible better steel mills and better rails for transporting

steel. With software, the recursion seems to be rapid and powerful.

There is, for example, a strong feed-forward dynamic between software and

computer hardware. The design and manufacture of computer hardware is, of

course, a demanding, complex matter. It is accordingly almost entirely

computerized - under software control. But better computer hardware makes

possible better computer software, in a never-ending loop. Texas Instruments is

currently finishing work on the latest generation computer integrated manufacturing

(CIM) system. One of the decisions they made in choosing the programming

language in which to build this system was to ignore hardware requirements - it

could gobble as much memory and processing power as needed; no functionality

was to be sacrificed on that score. Despite the fact that Texas Instruments

manufactures hardware, this sort of decision could not have been made too many

years ago: processing power was too expensive. But hardware costs have dropped.

Given a free hand with system size, the Texas Instruments engineers were free to

choose the best available software development system, with which to build the

best possible software. They chose Smalltalk and a number of related tools for the

Smalltalk environment, and have purportedly produced therewith a really

remarkable computer integrated manufacturing system. It is supposed to improve

throughput by a factor of 100 over current methods. But notably, this system will

be primarily used to produce... computer hardware. This better, cheaper hardware

may of course be used in the future to enable still more ambitious software systems

... and so the loop may continue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191

Another feed-forward loop we have touched on concerns the cycle from better

software construction techniques through components to markets and back to

software construction techniques. The general availability, through component

markets, of a wide and increasing variety of reusable components is sure to spawn

new kinds of software development firms and improved software development

technique, completing the loop and probably initiating some further development

equally significant.

3.2. General computerization

In general, the effects of computerization are very significant. The benefits of

computation are being extended into virtually every area of human endeavor,

making possible great precision, capture of information, widespread, inexpensive

communication, and a host of tools and processes that were impossible before.

Consider again, for example, the tools for rapid prototyping of machine parts.

Software is used in producing the drawings (computer-aided design), in sending the

drawings electronically to the prototyping device, in directing the laser that hardens

the polymer, and in precisely lowering the platform on which the model takes

shape, layer by layer. As the software for these purposes is improved, tool

prototyping will improve. Similarly, better software will impact the speed and

quality of production of virtually every hard good we use.

3.3. Learning to use software

Beyond the simple improvement of current processes through computer use is the

development of better processes that computers and software make possible. This

latter effect of software on capital structure development will be the more profound.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

192

Up to the present, in large part, we have used computers to automate old processes;

we are just beginning to learn how to make use of the computer to do new and

different things. Perhaps as significant, we are just beginning to learn how to adjust

management techniques and organizational structures to complement the

capabilities of computers.

We see this fact in the production of software itself: a great deal of work is being

done on learning to manage the software production process better, to take

advantage of reuse, to facilitate team programming, and to develop families of

products rather than a stream of individual projects. In manufacturing fields

computers provide immediate availability of information on a process, and the

ability to generate what-if scenarios through computer simulations. These are

powerful resources for management, such as to enable them to respond more

quickly and intelligently to changing circumstances. Again, it w ill take us a while

to learn how to use this information well, but when we do, we can expect still

further advances.

Very significantly, we seem to be learning how to enable better, more rapid

learning at a number of levels. Clearly the software development community has

recognized the importance of building evolvable systems that can "learn"

effectively. A similar awareness seems to be growing in management circles.

Wheelwright and Clark urge management techniques that help producers learn

from experience; Peter Senge has coined the term, "the learning organization."

(1990) If indeed we achieve significant social learning on the topic of how to learn

better, in the sense of how to improve our productive processes more rapidly, we

certainly have a strong case for exponential growth. Our tools and processes, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

193

hence our productivity per person, can spiral upward without limit, outrunning the

growth of population, at an accelerating pace.78

4. Implications for growth theory

How far the tendency to exponential economic development is checked, in

practice, is an interesting question which we cannot pursue further here. For now,

the important issue is: what are the determinants of rates of economic development?

What forces tend to accelerate growth? What forces tend to impede it? These, it

seems, are crucial issues with which the theory of economic growth should concern

itself. We close now with a consideration of what this inquiry suggests about useful

directions for the theory of economic growth.

4.1. Checks to growth in the new growth theory

The new growth theory of Paul Romer, as we saw in Chapter 1, takes seriously

some of the knowledge issues we have considered. Romer's work focuses on

"knowledge as the basic form of capital" (1986, p. 1003), considers "endogenous

technological change" (1990a), and finds that "growth rates can be increasing over

time." (1986, p. 1002) With all this, we are in agreement.

Where we differ with Romer is in our views on what factors slow these tendencies

to increasing rates of growth. In the simple models used by Romer and other

78 For a persuasive presentation of a possible, indeed likely, technological basis for
a marked upturn in the curve of economic development, see Drexler (1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

194

growth theorists, models which assume perfect knowledge and allow for no capital

destruction, there are no obvious factors tending to slow growth. But without some

such impeding factors, the models would have indeterminate solutions, would go to

infinity. This result being unacceptable to these theorists, they build into the

models a variety of ad hoc assumptions which make them tractable, and result in

some equilibrium growth path, or at least bounds on the possible rate of growth.

Arrow limits the model in his learning-by-doing paper, for example, by assuming, in

Romer's terms, "that the marginal product of capital is diminishing given a fixed

supply of labor." (Romer 1986, p. 1006) Others rely arbitrarily on upper bounds to

the production function. (Romer 1986, p. 1007) Romer himself relies, in his 1986

paper, on "diminishing returns in the research technology" (p. 1006), and in his

1990 paper on the assumption that human capital "must ultimately approach an

upper bound," given fixed population, (p. S80)

In examining software development, we have found all of these restrictions to be

contradicted by experience. As capital is divided and improved, its marginal

product increases;79 the production function - the structure of production -

improves as knowledge grows and is embodied in new capital goods.

Romer's restraints seem equally insupportable by experience. He separates the

"research technology" by which new designs are created from production

technology and asserts that research technology is subject to diminishing returns,

79 In this context, the idea of marginal product is metaphorical at best. The concept
of marginal product is relevant where we have additional increments of the same
kind of good. In this context, the essential point is that we continually have
different goods, adapted to the new, more productive environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

194

growth theorists, models which assume perfect knowledge and allow for no capital

destruction, there are no obvious factors tending to slow growth. But without some

such impeding factors, the models would have indeterminate solutions, would go to

infinity. This result being unacceptable to these theorists, they build into the

models a variety of ad hoc assumptions which make them tractable, and result in

some equilibrium growth path, or at least bounds on the possible rate of growth.

Arrow limits the model in his learning-by-doing paper, for example, by assuming, in

Romer's terms, "that the marginal product of capital is diminishing given a fixed

supply of labor." (Romer 1986, p. 1006) Others rely arbitrarily on upper bounds to

the production function. (Romer 1986, p. 1007) Romer himself relies, in his 1986

paper, on "diminishing returns in the research technology" (p. 1006), and in his

1990 paper on the assumption that human capital "must ultimately approach an

upper bound," given fixed population, (p. S80)

In examining software development, we have found all of these restrictions to be

contradicted by experience. As capital is divided and improved, its marginal

product increases;79 the production function - the structure of production -

improves as knowledge grows and is embodied in new capital goods.

Romer's restraints seem equally insupportable by experience. He separates the

"research technology" by which new designs are created from production

technology and asserts that research technology is subject to diminishing returns,

79 In this context, the idea of marginal product is metaphorical at best. The concept
of marginal product is relevant where we have additional increments of the same
kind of good. In this context, the essential point is that we continually have
different goods, adapted to the new, more productive environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

196

4.2. The check to growth evident here: the challenge of social learning

The present investigation suggests that in searching for factors which lim it the rate

of economic development, we must look elsewhere than to the kinds of limitations

modeled in growth theory. In simple terms, we have found that what checks the

tendency to ever more rapid economic development is that learning is challenging

and time consuming. If there were perfect information, if learning were easy, and if

new knowledge could be costlessly embodied in new capital goods, then growth

rates would be infinite. But in fact the learning process on which economic

development depends is costly in time and effort, because it is iterative and

dialogical. Furthermore, much of our existing wealth has been designed in a non-

modular way which makes it difficulty to evolve. The learning which occurs is

distributed widely throughout the capital structure in various people and tools; it

does not occur in every part of that structure at once, and it takes time for relevant

knowledge to spread (i.e., be learned by others, or sold to other embodied in capital

goods). Social learning is also coevolutionary: it involves complex

complementarities that shift in time.

As a result of these characteristics, economic development is frequently capital

destroying: new knowledge often makes old obsolete. Hence the process is not

cumulative; new learning and new capital cannot always be added to old.

This is of profound significance in the social field. We made constant
use of formulas, symbols, and rules whose meaning we do not
understand and through the use of which we avail ourselves of the
assistance of knowledge which individually we do not possess. (1945, p.
88)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

197

Economic development is indeterminate and path dependent: there is no

equilibrium toward which it tends; there are myriad possible paths along which it

can proceed. Accordingly, the process is uncertain: it requires constant

readjustment of plans, constant new learning, new efforts to establish or maintain a

useful place in the structure of production.

What checks economic growth rates, what restrains economic development from

the unrestrained advance toward which it tends, is that learning is difficult,

uncertain, and time-consuming. At present, at least, we do not seem to be very

good at it. There seem to be no inherent obstacles to exponential growth; it is

simply difficult to achieve. There is no fundamental tendency to diminishing

marginal utility of capital, for example, nor fundamental limits to the value of the

human capital we can develop in society; it is simply that for the myriad different

elements of an unfathomably complex structure of production to coevolve rapidly,

while maintaining a high degree of complementarity, is difficult.

4.3. The learning tasks before us

We conclude where we began, with Carl Menger's assertion that

Increasing understanding of the causal connections between things and
human welfare, and increasing control of the less proximate conditions
responsible for human welfare, have led mankind, therefore, from a state
of barbarism and the deepest misery to its present stage of civilization
and well-being. ...Nothing is more certain than that the degree of
economic progress of mankind will still, in future epochs, be
commensurate with the degree of progress of human knowledge. (1981,
p. 74)

Economic development depends on how well we learn. This suggests two sets of

tasks, one for the practitioners of the world: the programmers, engineers, managers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

198

and entrepreneurs who shape the tools and processes we use in production; and

one for the theorists, who try to help us understand how best to shape those tools

and processes.

For the practitioners, the task is to learn how to improve the rate of social learning.

Methodologies and tools must be developed which improve the dialogue through

which we learn: better prototyping tools, team learning techniques, and

representation schemes for facilitating communication among those with different

kinds of knowledge. Especially where our systems are very complex, tools for

understanding need to be developed, which offer a variety of views of the complex

reality. As much as possible these representation schemes and tools for

understanding should allow us to work on our complex systems in terms necessary

for thinking effectively about them.

Because it is the tool systems we use in which the learning must be embodied, we

need to learn better how to build more evolvable systems, systems that can "learn"

effectively in an uncertain and changing world. Because modularity evidently is

very important to evolvability, we need to extend our understanding of the

principles of modularity and the tradeoffs among them, so as to construct systems

with an appropriate degree and kind of modularity.

In the field of software development we need to learn how to achieve effective

markets for software capital - software components - so that we may take

advantage of the knowledge-generation that markets provide. Most important to

this end, we must learn how to establish property rights to software so that we can

take advantage of, rather than be hindered by, our ability to copy software almost

costlessly, and to distribute it at light speed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

199

For theorists, the task is to understand better and explain clearly those factors which

facilitate and those which impede the social learning process. These are the crucial

variables that determine rates of growth. The business of growth theory should be

to investigate energetically the factors which influence "the degree of progress of

human knowledge," for these will determine "the degree of economic progress of

mankind."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

201

Bibliography

Adams, Sam S. 1992a. "Software assets and the CRC technique," Hotline on
Object-Oriented Technology, Vol. 3, no. 10, August.

Adams, Sam S. 1992b. "Object-oriented ROI: extending CRC across the lifecycle,"
Hotline on Object-Oriented Technology. Vol. 3, no. 11, September.

Adams, Sam S. 1992c. "Software Reuse and the Enterprise," Software
Development '92. Spring Proceedings.

Allen, Peter M., 1990. "Why the Future Is Not What It Was," prepared for Futures.
6/4/90. Bedford, England: International Ecotechnology Research Center.

Arrow, Kenneth. 1962. "The Economic Implications of Learning by Doing,"
Review of Economic Studies. June.

Baetjer, Howard, and Tulloh, William. 1992. "Evolving Markets for Software
Components," Hotline on Object-Oriented Technology. Vol. 4, no. 1,
November.

Barn, Balbir S. 1992. "User Interface Development: Our Experience with HP
Interface Architect," in Spurr, Kathy, and Layzell, Paul, eds., CASE, Current
Practice. Future Prospects. Chichester: Wiley.

Belzer, A. and Rosenfeld, L. 1987. Breaking Through the Complexity Barrier.
Cambridge, Massachusetts: ICAD Publications.

Bennet, C.H. 1985. "Fundamental Physical Limits of Computation." Scientific
American. July.

Bohm-Bawerk, Eugen von. 1959 [1889]. Capital and Interest. 3 vols. Trans. G.D.
Huncke and H.F. Sennholz. South Holland, Illinois: Libertarian Press.

Bronowski, J. 1973. The Ascent of Man. Boston: Little, Brown, & Co.

Bosworth, George. 1992. "Objects, not classes, are the issue" Object Magazine.
Vol. 2, no. 4, Nov./Dec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

202

Brooks, Frederick P., Jr. 1975. The Mythical Man-month: Essays on Software
Engineering. Reading, MA: Addison-Wesley.

Brooks, Frederick P., Jr. 1987. "No Silver Bullet: Essence vs. Accidents of Software
Engineering" Computer, 10-19, April.

Chauary, Anil. 1992. "From art to part," Computerworld. Vol. 26, no. 45,
November 9.

Cinquegrana, D. 1990. Understanding ICAP System. Cambridge, Massachusetts:
ICAD Publications.

Cox, Brad. 1990. "Planning the Software Industrial Revolution" IEEE Software, 25-
33, November.

Cox, Brad. 1992. Object Technologies: A Revolutionary Approach

Diamond, Peter. 1990. Growth/Productivity/Unemployment. Cambridge,
Massachusetts: MIT Press.

Dixit, Avinash. 1990. "Growth Theory After Thirty Years," in Diamond, Peter,
Growth/Productivity/Unemployment. Cambridge, Massachusetts: MIT Press.

Domar, E. 1946. "Capital Expansion, Rate of Growth, and Employment,"
Econometrica. Vol. 14,137-47.

Domar, E. 1957. Essays in the Theory of Economic Growth. New York: Oxford
University Press.

Drexler, K. Eric. 1986. Engines of Creation. New York: Doubleday.

Drexler, K. Eric. 1991. "Exploring Future Technologies," in J. Brockman, ed.,
Doing Science. New York: Prentice Hall.

Englebart, Douglas C. 1963. "A Conceptual Framework for the Augmentation of
Man's Intellect," in Howerton and Weeks, eds., Vistas in Information
Handling, Washington D.C.: Spartan Books

Gadamer, Hans-Georg. 1975. Philosophical Hermeneutics, trans. and ed. David E.
Linge, Berkeley: University of California Press

Goldberg, Adele. 1981. "Introducing the Smalltalk-80 System," Byte, Vol. 6, no.
8, August.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

203

Hamming, R. W. 1968. "One Man's View of Computer Science," in R.L.
Ashenhurst, & Susan Graham, eds., ACM Turing Awards Lectures: The First
Twenty Years 1966-1985 Reading, MA: Addison-Wesley, 1987.

Harrod, R.F. 1939. "An Essay in Dyamic Theory," Economic lournal, Vol. 49,14-
33.

Harris, Kim. 1991. "Hewlett-Packard Corporate Reuse Program." Proceedings of
the Fourth Annual Workshop on Software Reuse. Reston, Virginia, Nov. 18-22,
1991.

Hayek, F.A. 1935. "The Maintenance of Capital." in Profits. Interest and
Investment. London: Routledge & Sons.

Hayek, F.A. 1941. The Pure Theory of Capital. Chicago: University of Chicago
Press.

Hayek, F.A. 1945. "The Use of Knowledge in Society," in Hayek (1948).

Hayek, F.A. I978. New Studies in Philosophy. Politics. Economics and the
History of Ideas. Chicago: University of Chicago Press.

Hayek, F.A. I979. The Counter-Revolution of Science. Indianapolis: LibertyPress.

Hayek, F.A. 1988. The Fatal Conceit. Chicago: University of Chicago Press.

Kamm, Lawrence J. 1990. Designing Cost-Efficient Mechanisms: Minimum
Constraint Design. Designing with Commercial Components, and Topics in
Design Engineering. New York: McGraw Hill.

Kara, Daniel A. 1992. "CASE and Advanced Software Development on the
Macintosh," CASE Trends Vol. 4, no. 6, September.

Kay, Alan. 1992. "The natural history of objects," in Happy 25th Anniversary
Objects!. Published by and supplement to SIGS Publications.

Kirzner, Israel M. 1966. An Essay on Capital. New York: Augustus M. Kelley.

Knight, Frank H. 1971 [1921]. Risk. Uncertainty, and Profit. Chicago: University
of Chicago Press.

KnowledgeWare. 1992. Advertisement insert, Computerworld. Vol. XXVI, no. 44.
November.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

204

Lachmann, L. M. 1975. "Reflections on Hayekian Capital Theory," Paper delivered
at the Allied Social Science Association meeting in Dallas, Texas. Photocopy
1975.

Lachmann, L. M. 1978. Capital and its Structure. Kansas City: Sheed Andrews
and McMeel.

Lachmann, L. M. 1986. The Market as an Economic Process. New York: Basil
Blackwell.

Langlois, Richard 1990. "Creating External Capabilities: Innovation and Vertical
Disintegration in the Microcomputer Industry." Business and Economic
History. Second Series, Vol. 19: 93-102.

Langlois, Richard N., and Robertson, Paul L. 1991. "Networks and Innovations in a
Modular System: Lessons from the Microcomputer and Stereo Component
Industries," unpublished manuscript.

Lavoie, Don. 1985. National Economic Planning: What is Left?. Cambridge,
Massachusetts: Ballinger.

Lavoie, Don Baetjer, Howard , and Tulloh, William 1991a. "Coping with
Complexity: OOPS and the Economist's Critique of Central Planning," Hotline
on Object-Oriented Technology. 3: 1, (Nov) pp 6-8.

Lavoie, Don, Baetjer, Howard and Tulloh, William. 1991b. "Increased
Productivity Through Reuse: An Economist's Perspective" Proceedings of the
Third Annual Workshop on Reuse. Software Productivity Consortium,
Herndon, VA.

Lavoie, Don, Baetjer, Howard and Tulloh, William. (1992). The Coming Software
Components Revolution: A Market-Process Perspective.

Leijonhufvud, Axel. 1989. "Information costs and the division of labour."
International Social Science lournal. 120.

Lucas, Robert E., Jr. 1988. "On the Mechanics of Economic Development," lournal
of Monetary Economics. Vol. 22.

Mackaay, Ejan. 1990. "Economic Incentives in Markets for Information and
Innovation," Harvard lournal of Law and Public Policy. Summer.

McClure, Carma. 1989. CASE is Software Automation, Englewood Cliffs: Prentice-
Hall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

205

Menger, Carl. 1981 [1871]. Principles of Economics. New York: New York
University Press.

Meyer, Bertrand. 1988. Object-oriented Software Construction. Englewood
Cliffs, NJ: Prentice-Hall.

Meyer, Bertrand. 1990. "The New Culture of Software Development" lournal of
Object-Oriented Programming (Nov./Dec.)

Meyer, Bertrand. 1991. "From the bubbles to the objects," in "Evolution vs
revolution: Should structured methods be objectified?" Object Magazine, 1:4,
November/December.

Miller, Mark S. and Drexler, K. Eric. 1988. "Markets and Computation: Agoric
Open Systems," in B.A Huberman, ed., The Ecology of Computation
Amsterdam: North-Holland.

Mises, Ludwig von. 1966 [1949]. Human Action, Chicago: Henry Regnery
Company.

Mori, Ryoichi and Kawahara, Masaji. 1990. "Superdistribution: The Concept and
The Architecture" The Transactions of the IEICE. 73:7, July.

Mullin, Mark. 1990. Rapid Prototyping for Object-Oriented Systems. Menlo Park.
California: Addison-Welsey.

Nelson, Richard R., and Sidney G. Winter. 1982. An Evolutionary Theory of
Economic Change. Cambridge: Harvard University Press.

Norman, Ronald J., and Forte, Gene. 1992a. "Automating the Software
Development Process: CASE in the '90's." Communications of the ACM, Vol.
35, no. 4.

Norman, Ronald J., and Forte, Gene. 1992b. "A Self-Assessment by the Software
Engineering Community." Communications of the ACM. Vol. 35, no. 4.

Palmer, Tom G. 1989. "Intellectual Property: A Non-Posnerian Law and
Economics Approach," Hamline Law Review. Spring.

Polanyi, Michael. 1958. Personal Knowledge. Chicago: University of Chicago
Press.

Prieto-Diaz, Ruben. 1991. "Reuse in the U.S.," International Conference on
Software Engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

206

Robertson, Paul L., and Richard N. Langlois. 1992. "Modularity, Innovation, and
the Firm: the Case of Audio Components," in Mark Perlman, ed.,
Entrepreneurship. Technologicallnnovation. and Economic Growth:
international Perspectives Ann Arbor: University of Michigan Press.

Robinson, Keith. 1992. "Putting the SE into CASE," in Spurr, Kathy, and Layzell,
Paul, eds., CASE. Current Practice. Future Prospects. Chichester: Wiley.

Romer, Paul M. 1986. "Increasing Returns and Long-Run Growth," lournal of
Political Economy. Vol. 94, no. 5.

Romer, Paul M. 1990a. "Endogenous Technological Change." American
Economic Review. Vol. 80, no. 2.

Romer, Paul M. 1990b. "Are Nonconvexities Important for Understanding
Growth" lournal of Political Economy. Vol. 98, no. 5.

Ryan, Doris. 1991. "RAPID/NM," presentation at the Fourth Annual Workshop on
Software Reuse. Reston, Virginia, Nov. 18-22,1991.

Salin, Phil. 1990. "The Ecology of Decisions, or, 'An Inquiry into the Nature and
Causes of the Wealth of Kitchens,'" Market Process, 8: 91-114.

Schumpeter, Joseph A. 1934. The Theory of Economic Development. Cambridge:
Harvard University Press.

Senge, Peter M. 1990. The Fifth Discipline: The Art and Practice of the Learning
Organization New York: Doubleday.

Set Laboratories. 1992. Advertisement in CASE Trends. Vol. 4, no. 6, September.

Shina, Sammy. 1991. Concurrent Engineering and Design for Manufacture of
Electronics Products. New York: Van Nostrand Reinhold.

Smith, Adam. 1976 [1776]. An Inquiry Into the Nature and Causes of the Wealth
of Nations. Chicago: University of Chicago Press.

Smith, M.F. 1991. Software Prototyping;; Adoption. Practice, and Management,
London: McGraw-Hiii.Solow, Robert M. 1956. "A Contribution to the Theory
of Economic Growth," Quarterly lournal of Economics. Vol. 70, no. 1.

Solow, Robert M. 1970. Growth Theory: an Exposition. Oxford, Clarendon.

Sowell, Thomas. 1980. Knowledge and Decisions. New York: Basic Books.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

207

Stiglitz, Joseph E. 1990. "Comments: Some Retrospective Views on Growth
Theory," in Diamond, Peter. Growlh/Productivitv/Unemplovment. Cambridge,
Massachusetts: MIT Press.

Suh Nam. 1990. The Principles of Design. New York: Oxford University Press.

Taylor, David A. 199C. Object-Oriented Technology: A Manager's Guide.
Alameda, California: Servio Cororation

Teece, David J. 1980. "Economies of Scope and the Scope of the Enterprise,"
journal of Economic Behavior and Organization. Vol.l, no. 3.

Tirso, Jesus. 1991. "IBM Reuse Program." Proceedings of the Fourth Annual
Workshop on Software Reuse. Reston, Virginia, Nov. 18-22, 1991.

Vaughn, Karen. 1990. "The Mengerian Roots of the Austrian Revival," History of
Political Economy, supplemental issue

Wheelwright, Steven C., and Clark, Kim B. 1992. Revolutionizing Product
Development. New York: The Free Press.

Whitefield, Bob and Auer, Ken. 1991. "You can't do that in Smalltalk! Or can
you?" Object Magazine, Vol. 1, no.1, May/June.

Womack, James P., Jones, Daniel T., and Roos, Daniel. 1990. The Machine that
Changed the World, New York: Harper Perennial.

Young, Allyn. 1928. "Increasing Returns and Economic Progress." Economic
lournal. December.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Vita

Howard Baetjer Jr. was born on February 27, 1952 in Baltimore, Maryland. He
graduated from Gilman School in 1970. He received his Bachelor of Arts in
psychology from Princeton University in 1974, and then taught English for several
years at St. George's School in Newport, Rhode Island. He received his Master of
Letters in English literature from the University of Edinburgh in 1980, and his Master
of Arts in political science from Boston College in 1984. After working for three
years as educational liaison at the Foundation for Economic Education in Irvington,
New York, he began doctoral work in economics at the Center for the Study of
Market Processes at George Mason University. He received his Doctor of
Philosophy in economics in 1993.

PUBLICATIONS

1983. "Lasers, Harobeds, and World Hunger," The Freeman. August.
1984. "Does Welfare Reduce Poverty?" The Freeman. April.
1984. "Of Obligation and Transfer Taxation," The Freeman, November.
1985. "Profit-Maker, Friend or Foe?" The Freeman. April.
1986. "Deregulate the Utilities," The Freeman, September.
1986. "Private Schools in the Inner City," The Freeman. November.
1987. "Freedom in the Dock," The Freeman, February.
1988. "Ebenezer Scrooge and the Free Society," The Freeman. December.
1988. "Beauty and the Beast," Reason, January.
1993. "The Manners of the Market," Religion & Liberty, March/April.

Baetjer, Howard, and Tulloh, William. 1992. "Evolving Markets for Software
Components," Hotline on Object-Oriented Technology. Vol. 4, no. 1,
November.

Lavoie, Don, Baetjer, Howard, and Tulloh, William. 1990. "High Tech Hayekians:
Some Possible Research Topics in the Economics of Computation," Market
Process. 8.

Lavoie, Don, Baetjer, Howard, and Tulloh, William. 1991. "Coping with
Complexity: OOPS and the Economist's Critique of Central Planning," Hotline
on Object-Oriented Technology. Vol. 3, no. 1, November.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

209

Lavoie, Don, Baetjer, Howard, and Tulloh, William. 1991. "Increased Productivity
Through Reuse: An Economist's Perspective" Proceedings of the Third Annual
Workshop on Reuse. Software Productivity Consortium, Herndon, VA.

Lavoie, Don, Baetjer, Howard and Tulloh, William. 1993. The Coming Software
Components Revolution: A Market-Process Perspective. Boston: Patricia
Seybold Group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

