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Abstract

SOFTWARE AS CAPITAL: LESSONS FOR ECONOMIC DEVELOPMENT FROM 

SOFTWARE ENGINEERING

Howard Baetjer Jr., Ph.D.

George Mason University, 1993

Dissertation Director: Professor Don Lavoie

This dissertation investigates the nature of economic development: how do human 

societies advance in economic well-being? More narrowly, it investigates the role 

of capital goods in this advance: what is the nature of the processes by which 

people improve the capital structure? The dissertation addresses these questions 

through examining software development -  its practices, tools, and technologies, 

and their evolution. Software development illuminates the nature of capital 

development in general.

The theoretical foundation of the work is Austrian capital theory. Neoclassical 

growth theory, including the "new growth theory" of Paul M. Romer, is found to be 

of little of use here, because it abstracts away from what Ludwig Lachmann calls the 

structural aspects of capital: its heterogeneity and complementarity. Following Carl 

Menger, this study attributes human advancement primarily to the advancement of 

human knowledge. Capital goods embody the knowledge of many. Because this
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knowledge is dispersed, often tacit, and incomplete, the capital structure evolves 

through a social learning process.

Requirements for software applications can rarely be established before 

development begins. Hence software developers have evolved procedures such as 

rapid prototyping for learning what the software must do. Prototyping is an 

iterative, interactive, dialogue-like learning process. Tools, languages, and 

methodologies are evolving which primarily enable understanding of the complex 

systems being developed. Object-oriented programming systems especially 

improve learning by providing rapid feedback and by allowing developers to 

program with high-level abstractions suitable for thinking about the problems being 

addressed.

Because conditions change, software must constantly evolve to maintain its value. 

Experience with software maintenance suggests that evolvability of software systems 

is fostered by modularity, which improved understandability, localized changes, 

and reduces system complexity. Modular, object-oriented techniques also enable 

construction of reusable software components, and hence improved specialization 

and division of knowledge.

Availability of reusable components may lead to component markets, given 

requisite social learning in the development of standards, new distribution channels 

and pricing techniques. Markets themselves would foster additional social learning 

by generating new information.
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Exponential growth is checked by the difficulty of social learning: more rapid 

economic development depends on learning better at all levels of economic 

organization.
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Preface

The fundamental aim of this dissertation is to achieve a better understanding of 

economic development. More particularly, the aim is to understand the processes 

through which the capital structure -  our tools of production and their 

interrelationships -  develops and improves. The dissertation seeks, accordingly, to 

contribute both to the theory of economic development and to capital theory, 

(indeed, I view these as inextricably related), by addressing the problem of how 

new and better systems of production are conceived and built. Why, then, does the 

paper focus primarily on software development?

The reason is that knowledge is prominent in software as in no other kind of capital 

good. Following Carl Menger, I view capital goods as being fundamentally 

embodied knowledge. This dissertation will emphasize this view, and strive to 

explicate the processes by which knowledge is elicited, discovered, and embodied 

in the capital structure. With most other kinds of capital goods it is easy to overlook 

how much knowledge is built into them, because what we see is the steel and glass, 

the copper and plastic, the silicon and polymer in which that knowledge is 

embedded. Software, by contrast, we do not see at all; we think about it 

independent of its physical form. We are equally comfortable thinking about it as 

printed out on paper, stored magnetically on a floppy disk, or loaded and running in 

the circuits of a computer. Indifferent to the physical medium in which it is 

embodied, we are readily able to focus on the knowledge that software embodies.

1
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2

While the paper focuses on software, the principles uncovered apply to capital 

goods in general. All kinds of capital goods are embodied knowledge; for all of 

them knowledge is of the essence, not the physical substrate on which that 

knowledge is imprinted. The software development experience has parallels in the 

development of physical capital. In the concluding chapter, we will take up these 

parallels directly.

The first chapter lays the theoretical foundation for the investigation. After pointing 

out that neoclassical growth theory offers little insight into the role of capital in 

economic development, it draws on Austrian capital theory for understanding of the 

relationships between knowledge and capital, and of the structural aspects of 

capital. It finds that, given the nature of capital goods, capital development is a 

social learning process. Chapter 2 then provides an overview of the history and 

terminology of software development, introducing some of the main issues which 

subsequent chaptqgs will investigate for illumination of this process.

Chapter 3 discusses initial software development, looking particularly at the 

evolution of the procedures and tools used. It demonstrates that the software 

development process is one of interactive, social learning. Chapter 4 goes on to 

investigate the on-going development of software -  software maintenance -  that 

occurs after initial products are delivered. The purpose of the chapter is to assess 

the characteristics of software which is able to evolve readily; we find modularity to 

be of fundamental importance.

Chapter 5 broadens the perspective to examine the prospects for software 

component markets and the benefits those markets promise. It treats the evolution 

of such markets, and the institutions and attitudes requisite thereto, as another
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species of social learning. Chapter 6 summarizes, draws parallels to the 

development of physical capital goods, and draws implications about the rate 

economic development, both for growth theorists who would study it, and for 

practitioners who would improve it.
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Chapter 1

Knowledge Capital and the Theory of Economic Growth

Men, my brothers, men, the workers, ever reaping something new,
That which they have done but earnest o f the things that they shall 

do.

For I dipped into the future, far as human eye could see,
Saw the Vision o f the world, and all the wonder that would be.

- Tennyson, "Locksley H a ll"

1. The subject of this investigation: Better tools as a cause of the 

wealth of nations

The dissertation is motivated by the same question which motivated Adam Smith's 

An Inquiry into the Nature and Causes of the Wealth of Nations (1976): how do we 

account for human beings' economic advancement? How is it that our race of 

talking primates has been able to advance from barbarism to abundance (at least in 

certain areas of the world)? What is the nature of the process by which we are able, 

over time, to get more and better of the "necessaries and conveniencies of life" for 

the same amount of effort?

My piece of this large inquiry takes as its point of departure the observation that 

human society advances in economic well-being by increasing its productivity per 

person and by extending trade, and that these improvements depend on appropriate 

rules of conduct. Human advancement is thus an intertwined evolution of the 

capital structure, the catallaxy, and the common law. I focus on the first of these

4
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and ask, how do people in a society improve their productivity -  their ability to 

produce more of the things they wants with a given amount of human effort? They 

does so fundamentally by increasing their knowledge of productive relationships, 

and building this knowledge into better tools -  better devices which extend their 

physical, perceptual, and mental faculties for understanding and transforming the 

world they live in. This view of human advancement I derive from the Austrian 

School of economics, and in particular from the founder of the Austrian School, Carl 

Menger.1

Of course we may improve productivity by working harder, but the effects of 

greater exertion are far less than the effects of better tools. In a task such as reaping 

grain, for example, even the most heroically increased exertions of a barehanded 

reaper yield far smaller productivity gains than equipping an average worker with a 

steel sickle. Also we may improve productivity by producing greater numbers of 

the same kinds of tools, but here again the effects fall far short of the effects of 

building better tools. Even if we were to equip everyone in the village with a steel 

sickle, productivity at harvest time must fall far short of what it would be if we were 

to equip only one worker with a John Deere grain combine. Better tools, then, are 

the key to greater productivity. For a society to improve its productivity, that 

society must improve the quality of its tools -  its capital goods.

The context in which capital is meaningful is production. Production is a matter of 

transforming our condition from a less-preferred to more-preferred state. What

1 Essential works in this tradition are Menger (1981), Bohm-Bawerk (1959), Hayek 
(1935 and 1941), Mises (1966), and Lachmann (1978).
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transformations will answer the purpose, and how to carry them out, are the crucial 

questions. Any capital is going to be some kind of embodied knowledge of such 

transformations and how to accomplish them. Capital is saved-up learning which 

gives us a head start on production.

How does a society improve the quality of its capital goods? How does it manage 

to save up its knowledge of useful transformations? What is the nature of the 

process, and what is involved in the process? These are the questions to be 

explored in this dissertation.

2. Irrelevance of mainstream "theory of economic growth"

Because tools are so important to economic development and growth, one might 

expect to find insight into these questions in the branch of economics known as the 

theory of economic growth. But in fact, with the exception of Joseph Schumpeter's 

work (1934), growth theory, both the traditional and the "new growth theory," is 

engaged in a different kind of inquiry. Growth theory has very little to say about the 

development of the new and better tools we ultimately depend on for economic 

advancement -  the development of the capital structure. Notwithstanding the 

merits this body of work may have for understanding other aspects of economic 

growth, it has little relevance for the present inquiry.

2.1. Problematic aspects of traditional growth theory: the Harrod-Domar-Solow 

approach

At the center of neoclassical growth theory is the Harrod-Domar approach (Harrod 

1939, Domar 1946 and 1957), which was elaborated by Robert Solow in work that
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helped win him the Nobel prize. (1956, 1970) Although this body of work refers to 

capital extensively, it says very little about capital, and nothing about how the 

capital structure evolves. In fact, it assumes that the capital structure does not 

evolve in any qualitative way. There are three closely interrelated assumptions in 

this theory which necessarily eliminate consideration of actual improvements to 

capital goods and the capital structure.

It ignores the heterogeneity of capital

A fundamental problem with the Harrod-Domar-Solow strand of growth theory for 

our purposes is that it treats capital as homogeneous. In Harrod's model, capital is a 

homogeneous stuff that can be accumulated incrementally. The "actual saving in a 

period . . .  is equal to the addition to the capital stock,"2 Harrod tells us. This 

indicates that quantities of "capital" may be indefinitely built up. Solow's 

discussion of the model makes this more explicit: he defines "the stock of capital" 

as "the sum of past net investments" (1970, p. 4, emphasis added), and says that the 

"capital requirement per unit of output [is a] fixed number. . .  in the sense that [it 

does] not change in the course of time" (1970, p. 9). Capital is not only 

homogeneous in time, according to Solow, but also homogeneous across time.

This mechanical approach to capital treats it like a multiplier: more capital means a 

bigger number multiplying the effort of labor. E.g., if we have 100 units of K at time 

0, and, say, 5 laborers, then we get 5 * 100 = 500 units of output. Then we take 

some savings from that output and (less depreciation) add it to the 100. Suppose

2 Harrod (1939, p. 18). All references to Harrod are from this work.
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net savings are 3, then in period 1 we have 5 * 103 = 515 units of output. Capital 

is essentially all of the same kind and quality. Its value is its purchase price; it can 

be increased only quantitatively. Given fixed input of human effort, getting more 

output with the same "amount" of capital is not possible.

But capital in the world is not homogeneous. As Ludwig Lachmann points out,

"capital resources are heterogeneous While we may add head to head . . .  and

acre to acre . . .  we cannot add beer barrels to blast furnaces nor trucks to yards of 

telephone wire." (Lachmann 1978, p. 2) Furthermore,

for most purposes capital goods have to be used jointly.
Complementarity is of the essence of capital use. But the heterogeneous 
capital resources do not lend themselves to combination in any arbitrary 
fashion (1978, p. 3)

Some capital combinations are useless: beer barrels and blast furnaces, for example. 

But other combinations multiply the value of one another, e. g., fertile fields and 

advanced farm machinery. To quote from Lachmann again,

The theory of capital must therefore concern itself with the way in which 
entrepreneurs form combinations of heterogeneous capital resources in 
their plans, and the way in which they regroup them when they revise 
these plans. A theory which ignores such regrouping ignores a highly 
significant aspect of reality: the changing pattern of resource use which 
the divergence of results actually experienced from what they had been 
expected to be, imposes on entrepreneurs. (1978, p. 35)

The theory of capital must also concern itself with the way in which entrepreneurs 

develop new, different, and better heterogeneous capital resources.

We note in passing that the Harrod-Domar-Solow theory not only fails to 

differentiate between kinds and orders of capital, it also fails to differentiate even 

between capital goods and consumption goods. Harrod states that, "No distinction
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is drawn in this theory between capital goods and consumption goods. In 

measuring the increment of capital, the two are taken together; the increment 

consists of total production less total consumption." (p. 18) This is another way of 

saying that saving equals investment, and that all savings automatically become 

capital goods. This failure to distinguish between the different categories of goods 

produced leads Harrod to such remarkable statements as, "a condition of general 

over-production is the consequence of producers in sum producing too little." (p. 

24) In Solow's development of Harrod's work the blurring of capital goods and 

consumption goods is made even more explicit: "The model economy produces 

only one composite commodity, which it can either consume currently or 

accumulate as a stock of capital."3

Modeling production in this way helps illuminate the role of savings in economic 

development, and draws attention to interesting issues concerning the sustainability 

of growth rates under particular conditions. In particular it helps clarify the 

conditions under which a dynamic equilibrium might be possible.But the present 

investigation is concerned with how we develop new and better means of 

producing the things we want; therefore a theory that assumes away differences 

between the things we want and the means of producing them is not of use here.

It assumes quantifiability of capital

Traditional growth theory also relies on a mathematical treatment of capital: capital 

appears in the models as a numerical variable in a production function. Such a

3 Solow (1970, p. 9). Unless otherwise noted, all references to Solow are from this 
work.
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treatment implies that capital can be meaningfully quantified -  measured in some 

way. Harrod, for example, speaks of "the value o f ... capital goods" (p. 16) and 

posits that "actual saving in a period ... is equal to the addition to the capital stock" 

(p. 18). The terminology gives the impression that capital can be easily measured, 

and the equations depend on the economy's capital stock being quantifiable.

But capital is ultimately unmeasurable.4 As Harrod's colleague Joan Robinson 

observed, "no one ever makes it clear how capital is to be measured."5 Israel 

Kirzner addresses the immeasurability of capital in his An Essay on Capital (1966).6 

First he dispenses with the idea that capital can be measured in raw physical terms.

The truth is that the heterogeneity of the various physical items in the 
stock not only constitutes a well recognized barrier to the construction of 
such a measure, but represents at the same time the reason why such a 
measure can play no significant role at all in the analysis of decision 
making in the course of capitalistic production. The producer simply 
cannot afford to ignore the heterogeneity of the various items in the 
capital stock, (p. 105)

Kirzner then turns to "backward-looking" measures of the existing capital stock: the 

past sacrifices -  the costs -  involved in building up that stock. This is the kind of 

measure most in accordance with the Harrod-Domar-Solow methodology, since

4 An economy's aggregate capital stock cannot be measured, although a firm's can 
be, in a sense: a firm can calculate the money value of its capital. Economic 
calculation achieves a rough and ready way of measuring the value of capital for a 
given profit center.

5 Joan Robinson, The Rate of interest, and other Essays, p. 54, quoted in Lachmann 
(1978), p. 5.

6 See also Hayek (1935) and Lachmann (1975 and 1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

they declare the value of new capital to be that of the output not consumed in a 

period. Kirzner points out that these past costs are generally of different kinds and 

made at different dates; accordingly they cannot be meaningfully summed.

Likewise "forward-looking" measures of capital are unsatisfactory. These are the 

efforts "to measure the capital stock by the contribution to future production that it 

is able to make" (p. 113). With these measures there are a number of difficulties, 

the most important being that future value depends on many individuals' plans for 

the capital (which has alternative uses), and that these plans may be mutually 

inconsistent. "[I]t is in many respects a misleading simplification to talk as if a given 

resource were unambiguously associated with a definite flow of output, in the sense 

that such an output flow is forthcoming automatically from the resource." (p. 114).

The point here is not simply that it is technically difficult to quantify the amount or 

the value of capital, but that the notion of an amount of capital has at best an 

extremely imprecise meaning. It is imprecise even as an accounting measure within 

a firm, where plans for the use of different pieces of capital can be kept more or less 

compatible. But as the level of aggregation increases, the imprecision grows 

rapidly. "The amount of capital" is at best a useful mental shorthand. Treating it as 

if it were precise, in a mathematical equation, is more likely to confuse than to 

clarify.

It assumes a fixed functional relationship between aggregate capital and 

output

The two problems mentioned above -  the twin assumptions of homogeneity and of 

quantifiability of capital -  are probably consequences of this third: that the theorists 

are determined to represent the relationship between capital and output as a
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functional relationship, in which the function itself is not allowed to change.7 To 

model production in a functional relationship with capital necessitates an 

interpretation of capital as homogeneous, so that it may be aggregated 

meaningfully, and as quantifiable (at least in principle), so that this aggregation may 

be represented by a numerical variable.

The only place Harrod's model8 might admit changes in the quality of people's 

tools, and hence in the production function, is in C, the "capital coefficient," 

defined as "the value of the capital goods required for the production of a unit 

increment in output." But as Harrod presents C, changes in its value are

7 Technological change may sometimes occur, but only as an exogenous shock.

8 Harrod's 1939 article, "An Essay in Dynamic Theory" entails the following 
elements:

G the geometric rate of growth of output or income
Gw the "warranted" rate of growth
xq, x i output, periods 0 and 1 
s the savings rate as a fraction of income
C the "capital coefficient," "the value of the capital goods required for the

production of a unit increment in output"
Cp the actual capital coefficient; "the value of the increment of capital per unit 

increment of output actually produced"

While G is simply the growth rate that actually occurs, Gw, the warranted rate "is 
taken to be that rate of growth which, if it occurs, w ill leave all parties satisfied that 
they have produced neither more nor less than the right amount. ...it w ill put them 
into a frame of mind which will cause them to give such orders as w ill maintain the 
same rate of growth."

The model that Harrod puts together from these concepts depends on two closely 
related equations. His "Fundamental Equation" is Gw = s/C. This gives the 
warranted rate. The formula for the actual rate of growth is G = s/Cp. The whole 
theory turns on divergences between these two.
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unimportant. While he tells us that C can change, beyond vague references to "the 

state of technology" we are given no indication of how, when, or why it might do 

so. More importantly, in Harrod's actual description of the workings of the 

economy, he allows for no adjustments in technology. The only kind of adjustment 

his model allows to producing agents is a change in how much they produce -  by 

the same technology. If, for example, producers find that they have not sold all of 

their output in one period, they respond by cutting back production in the next 

period; these cutbacks are general (because there are no different kinds of goods), 

and therefore the economy falls off Harrod's famous "knife-edge." What producers 

never do, in a Harrod world, is react to poor sales by improving their tools so that 

next year they can produce at lower cost and sell all their output by offering it at a 

more attractive lower price.

For Solow, the fixed relationship between capital and output is made quite explicit: 

"the capital/output ratio is ... constant -  this is one of the defining characteristics of 

a steady state... (p. 33) Solow assumes constant returns to scale (p. 34), and 

contrives the model so that "technological progress augments labor only." (p. 35) 

That is, technological progress improves what human workers can do, not what 

their machines and devices can do. Increasing advances in productivity per person 

resulting from new capital goods are ruled out. In a Solow world there can be no 

fine new machines with which a company may halve its work force and still 

produce the same output.^

9 This is true unless "the capital stock" can be "constant" even while the 
composition of that capital stock (to use a term Solow does not) changes. Solow 
suggests such a possibility:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

The problem with an unchanging production function (let alone a function with 

constant returns to scale), is that it implies an absence of change in how things are 

done. But again, our inquiry is concerned with how we come to develop new tools 

and methods, which mean new and different ways of producing -  a different 

"production function." Further, given the unfathomably complexity of the 

relationships among productive inputs, it would seem to be straining the metaphor 

to describe production as a function at all. It seems necessary, instead, to address 

directly the structural interrelationships among capital goods.

2.2. Missing structural elements: complementarity and indivisibility

Because it assumes that capital is homogeneous and unchanging except in quantity, 

the mainstream theory does not address fundamentally important structural aspects 

of capital which have been elucidated by the Austrian School, especially Ludwig

It should be realized that this reduction of technological progress to the 
efficiency-unit content of an hour of labour is a metaphor. It need not 
refer to any change in the intrinsic quality of labour itself. It could in 
fact be an improvement in the design of the typewriter that gives one 
secretary the strength of 1.04 secretaries after a year has gone by. What 
matters is this special property that there should be a way of calculating 
efficiency-units of labour, dependent on the passage of time but not on 
the stock of capital, so that the input-output curve doesn't change at all 
in that system of measurement, (p. 35)

The passage implies that improvements in capital can occur (e.g., the better 
typewriter) independent of a change "in the stock of capital." Surely this 
conception presents difficulties in how we measure the stock of capital, and invites 
the question of why technology which yields a better typewriter design is not 
"capital-augmenting."
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Lachmann. A realistic view of the process of capital accumulation and its effects 

must take into account several factors that Harrod-Domar-Solow theory ignores.

The core point is that capital accumulation generally involves a lengthening of the 

capital structure, with what Lachmann calls a '"division of capital,' a specialization 

of individual capital items, which enables us to resist the law of diminishing 

returns" (1978, p. 79). Capital accumulation is primarily manifested not in the 

addition of more of the same. It occurs in what we might call a "complexifying" of 

the capital structure, an increasing in intricacy of the pattern(s) of complementarity 

among increasingly specialized capital goods, born in the on-going growth and 

division of knowledge.10 Capital accumulation "does not take the form of 

multiplication of existing items, but that of a change in the composition of capital 

combinations. Some items will not be increased at all while entirely new ones will 

appear on the stage" (Lachmann 1978, p. 79). The homogeneity assumption 

obscures this key fact.

In pointing to "capital combinations," Lachmann stresses complementarity in this 

kind of process, and indivisibility of capital goods that is usually involved. 

Generally the various items in a new, more complex capital structure have no 

usefulness at all except in combination with the other items, and those items are 

indivisible. "It w ill not pay to install an indivisible capital good," says Lachmann, 

"unless there are enough complementary capital goods to justify it. Until the

10 Lachmann, following Hayek (1935), holds that over time there develops "an 
increasing degree of complexity of the pattern of complementarity displayed by the 
capital structure." (1975, p. 4)
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quantity of goods in transit has reached a certain size it does not pay to build a 

railway" (p. 80).

A consequence of complementarities in capital use is that new economies of scale 

become possible, or rather economical, as a result of capital accumulation. These 

economies are the consequence not of the size of particular production processes 

(the sense in which we usually think of scale economies), but of the scope of their 

interaction. It makes sense to invest in a large-scale, indivisible capital item only in 

the presence of the necessary complementary capital. Lachmann gives a strong 

illustration: "The accumulation of capital does not merely provide us with the 

means to build power stations, it also provides us with enough factories to make 

them pay and enough coal to make them work" (p. 80). The greater scale 

economies possible in the power stations and the factories depend for their 

economic feasibility on one another. Similarly, it is said that the spreadsheet 

program drove the explosive sales of personal computers over the last decade -  the 

tremendous economies that have been achieved in computer hardware over the last 

decade have been achieved through very large scale production, which itself has 

been driven by high-volume sales of popular software packages such as 

spreadsheets. On this view capital accumulation can affect growth in a way that is 

more exponential than geometric.

In Orowth Theoryr Robert Solow defines the stock of capital in his model as "the 

sum of past net investments" (1970, p. 4), maintaining the idea that new capital is 

simply added onto old. But because complementarity is fundamental to capital -  

because capital goods must be used jointly with some specific others -  old capital is 

often destroyed in the process of capital accumulation; that is, its value is destroyed.
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This is another basic fact of economic life that the Harrod-Domar-Solow approach 

ignores. Millions of dollars worth of whaling equipment was destroyed by the 

building up of the kerosene industry; vast quantities of iron-producing capital was 

destroyed by the advent of the capital goods that produce steel; software 

applications are made obsolete every few months as better come along. In the 

regrouping process that Lachmann describes, "some of these capital goods w ill have 

to be shifted to other uses while others, which cannot be shifted, may lose their 

capital character altogether. Thus the accumulation of capital always destroys some 

capital" (Lachmann 1978, p. 80).

Increasing returns to scale are also absent from the Harrod-Domar-Solow approach. 

Growing economies of scale are not inevitable, but likely in a free economy; they 

can and do result from the capital accumulation as it occurs in practice. (Young 

1928) In Lachmann's terms,

We conclude that the accumulation of capital renders possible a higher 
degree of the division of capital; that capital specialization as a rule takes 
the form of an increasing number of processing stages and a change in 
the composition of the raw material flow as well as of the capital 
combinations at each stage; that the changing pattern of this composition 
permits the use of new indivisible resources; that these indivisibilities 
account for increasing returns to capital... (p. 85).

Theorists such as Harrod and Solow, and even Paul Romer, whose work we take up 

below, assume a diminishing marginal productivity of capital. This assumption 

would make perfect sense if the kinds of capital being used did not change, but 

because they do change, it makes no sense at all, not in consideration of the 

economy as a whole, over time. Because the capital structure improves, the 

tendency is to increasing marginal productivity of capital.
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Again, while one can understand the desire of Harrod and his followers to simplify 

aspects of real world activity for convenience in their model, one must be wary of 

such simplifications as those made regarding capital. Simplifications which 

misrepresent and obscure do not aid understanding.

2.3. Shortfalls in the "new growth theory" of Paul M. Romer

In recent years, the theory of economic growth has been developed in what is 

known as the "new growth theory"; a major contributor to this literature is Paul M. 

Romer.11 Romer brings up some of the issues with which we are concerned in this 

paper, and shows real insight into their importance.

Valuable additional insights...

While most growth theory has posited "given technology," or, where technological 

change is allowed at all, treated it as exogenous, recent work has dropped this 

assumption. Nelson and Winter (1982), for example, allow endogenous 

technological change into their evolutionary simulation model. Romer addresses 

endogenous technological change directly. Indeed, the title of a recent paper of his 

is "Endogenous Technological Change." (1990a) Among the premises of his 

argument which constitute new departures for growth theory are "that technological 

change -  improvement in the instructions for mixing together raw materials -  lies at

11 See especially (1986, 1990a, and 1990b). Other important contributions include 
Lucas (1988) and Arrow (1962). For useful surveys of relevant work, see Diamond 
(1990), especially Dixit (1990) and Stiglitz (1990).
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the heart of economic growth," and "that technological change arises in large part 

because of intentional actions taken by people who respond to market incentives."

Whereas Nelson and Winter retained the notion of homogeneous capital, Romer 

goes a step further, and explicitly includes heterogeneity of capital goods. "The 

unusual feature of the production technology assumed here," Romer says, "is that it 

disaggregates capital into an infinite number of distinct types of producer durables." 

(1990a, p.S80)

Furthermore, Romer also brings out the link between knowledge and capital, 

ascribing the variety of capital goods to the different knowledge embodied in 

capital. He treats "long-run growth" as "driven primarily by the accumulation of 

knowledge by forward-looking, profit-maximizing agents," with a "focus on 

knowledge as the basic form of capital." (1986, p. 1003) This knowledge is 

embodied in capital goods:

The research sector uses human capital and the existing stock of 
knowledge to produce new knowledge. Specifically, it produces designs 
for new producer durables. An intermediate-goods sector uses the 
designs from the research sector together with forgone output to produce 
the large number of producer durables that are available for use in final- 
goods production at anytime. (1990a, p.S79)

Additionally, Romer takes seriously increasing returns in production where 

knowledge is increasing. His 1986 paper, entitled "Increasing Returns and Long- 

Run Growth," gives a "view of long-run prospects for growth" in which "per capita 

output can grow without bound, possibly at a rate that is monotonically increasing 

over time. The rate of investment and the rate of return on capital may increase 

rather than decrease with increases in the capital stock." (p. 1003)
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In this work, then, we have reason to hope for some illumination about the 

relationship between capital goods and economic development.

... but failure to develop the insights

These hopes are disappointed, however. Romer seems not so much interested in 

exploring the implications of his insights as preoccupied with forcing those insights 

into the Procrustean bed of mathematical tractability. As a result, his treatment of 

capital and its role in production is still very meager. Indeed, his models take the 

life out of his introductory discussions.

Although Romer talks of and models technological change, the change he talks 

about is superficial. Consider the production function from the model in his 1990 

paper:

[A] simple functional form for output is the following extension of the 
Cobb-Douglas production function:

Y(Hr ,L ,x ) = H raLbf j xi'-°-b
i = i

This production function differs from the usual production function only 
in its assumption about the degree to which different types of capital 
goods are substitutes for each other. In the conventional specification, 
total capital K is implicitly defined as being proportional to the sum of all 
the different types of capital. This definition implies that all capital 
goods are perfect substitutes. One additional dollar of capital in the form 
of a truck has the same effect on the marginal productivity of mainframe 
computers as an additional dollar's worth of computers. [This equation] 
expresses output as an additively separable function of all the different 
types of capital goods so that one additional dollar of trucks has no effect 
on the marginal productivity of computers. (1990a, p. S81)

Y here is "final output"; Hr is "human capital devoted to final output"; L is labor, 

and the various capital goods are the indexed values x,.
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To treat "output as an additively separable function of all the different types of 

capital goods" is to treat capital as homogeneous in fundamentally important 

respects, notwithstanding Romer's efforts to consider "distinct types of producer 

durables." Defining his production function in this way allows Romer to add 

additional types of capital goods indefinitely, just as Harrod could add additional 

numbers of capital goods indefinitely. In both cases, only the magnitude of the 

capital variable changes, not the form of the function. Implicitly, then, capital 

goods are all of a kind in respect to how they interact. To a given capital structure, 

add buggy whips or microchips (for Harrod add new quantities; for Romer, add new 

designs) and the effect on output w ill be the same, although the goods produced 

w ill differ. Capital is aggregable and thus implicitly homogeneous. Homogeneity 

of capital is further implied by Romer's construction of the production function as 

homogeneous of degree one (not so different from Solow after all). Where there are 

constant returns to scale, truly new and better production processes, which let us 

produce more with the same amount of input, are ruled out.

Lachmann's point that "[cjomplementarity is of the essence of capital use," (1978, p. 

3, emphasis in original) is just as damaging to Romer's actual formulation of his 

model as it is to the work of Harrod. Romer leaves no room for complementarity, 

nor its concomitant substitutability (and hence capital destruction). In brief, Romer 

leaves no room for any of the structural aspects of capital that we will find to be of 

fundamental importance. To illustrate briefly, consider the relationships among 

three elements of the software capital structure: the programming system Smalltalk, 

the programming language COBOL, and WindowBuilder, a set of tools for 

developing graphical user interfaces. WindowBuilder is built in Smalltalk, for use 

with Smalltalk -  without Smalltalk present it cannot work. COBOL is an older
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programming language that is arguably being made obsolete by object-oriented 

languages such as Smalltalk. How are we to make sense of "additive separability" 

in respect to these three? Not only are Smalltalk and WindowBuilder directly 

complementary, in the strict sense that one requires the other to be running on the 

same computer, but also WindowBuilder itself, having been built in Smalltalk, 

could never have come into being without Smalltalk. Suppose we "subtract" 

Smalltalk from the equation, what becomes of WindowBuilder? Then it never was. 

These are not "additively separable." Furthermore, COBOL is being replaced by 

Smalltalk in certain cases. Then is the productive power of Smalltalk "added" to 

that of COBOL, or does it subtract from it?

In this work, we hold structural issues of complementarity and substitutability, as 

well as dependencies of one design on another, as of WindowBuilder on Smalltalk, 

to be of fundamental importance. We will find no help with these in the "new 

growth theory." Romer says, "An investigation of complementarity as well as of 

mixtures of types of substitutability is left for future work." (1990a, p. S81)

The main question this work seeks to help answer is, "What is the nature of the 

process by which people learn how to fashion better tools?" Here again, Romer 

gives little help. Within his broader model of a three sector economy, he models 

technological innovation as occurring in a research sector. He models the economy 

in three sectors. The research sector draws on available human capital and, making 

use of the current stock of technological knowledge, produces new technological 

knowledge in the form of designs for production goods. This new knowledge is 

then licensed to the production goods sector, which may build the designs into new 

and better capital equipment in subsequent periods. The new capital equipment is
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then utilized by the final goods sector to produce consumable output. His 

substantive description of the process by which people learn how to fashion better 

tools is as follows:

It remains to specify the process for the accumulation of new designs, 
that is, for the growth of At. As noted above, research output depends 
on the amount of human capital devoted to research. It also depends on 
the stock of knowledge available to a person doing research.

Romer continues,

If designs were treated as discrete indivisible objects that are not 
produced by a deterministic production process, the production 
technology for designs would have to take explicit account of both 
integer constraints and uncertainty. There is no doubt that both 
indivisibility and uncertainty are important at the micro level and over 
short periods of time. The simplifying assumption made here is that 
neither is crucial to a first-pass analysis of technological change at the 
aggregate level, (p. S82)

After presenting an adjusted formalization of the model, he continues, "With this 

formal structure, the output of new designs produced by researcher j  can be written 

as a continuous, deterministic function of the inputs applied." (p. S83)

Given our purposes, this is disappointing. Having been urged so far in the paper to 

recognize the importance of technological progress, we may naturally ask of it, 

"what is the nature of the process?" If so, we must content ourselves with the 

answer that technological progress is "a continuous, deterministic function of the 

inputs applied," that is, human capital and the stock of knowledge. It amounts 

essentially to this: when well-trained researchers are given a lot of good 

information, they think up new technologies.
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The new growth theory has little to say about the process by which technological 

progress occurs. Indeed, it does not seem to be concerned with accounting for 

human economic advancement. Romer's paper does not; its attention is on 

requirements for and characteristics of a balanced growth equilibrium that is 

generated by the model as specified. Because it is based in a general equilibrium 

framework, there is no room for process: there is no uncertainty, no real time, no 

need for adjustment, no capital destruction. None of the richness of a mutual 

adjustment process in conditions of uncertainty is to be found here. The manner in 

which Romer formalizes his discussion takes the richness out of it, and leaves it in 

the end little better, for understanding the process of economic development, than 

the traditional models.

Like Harrod and Solow, Romer neglects the structural elements of capital. He 

chooses to ignore that the growth and division of knowledge leads to a growing 

complexity of complementary relationships among capital goods. For Romer, 

introducing new knowledge into production is essentially a research effort, not a 

coordination challenge.

3. Capital goods as knowledge

To inform our examination of the process of capital development, we look in this 

section at capital itself. We find a fundamental relationship between knowledge 

and capital. Indeed, we regard capital as embodied knowledge of productive 

processes and how they may be carried out. Different varieties of knowledge are 

involved, as well as different kinds of embodiment.
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3.1. Embodied knowledge

Carl Menger stresses the role of knowledge in human economic advancement: that 

knowledge is embodied in capital goods is fundamental to his thinking. He writes, 

"The quantities of consumption goods at human disposal are limited only by the 

extent of human knowledge of the causal connections between things, and by the 

extent of human control over these things." (1981, p. 74) As this statement comes 

in a passage contrasting simple collection of first-order goods with employing goods 

of higher order in production processes, it is clear that we are to take the use of 

higher-order goods -  capital goods -  as the application of the knowledge Menger 

speaks of. When we know how to produce in a roundabout way, we employ 

capital goods for the purpose. Our knowledge is to be found in practice not in our 

heads, but in the capital goods we employ. Capital is embodied knowledge.

In particular, capital equipment -  tools -  embody knowledge, knowledge of how to 

accomplish some purpose.12 Much of our knowledge of the causal relationships

12 Hayek writes,

Take the concept of a 'tool' or 'instrument,1 or of any particular tool such 
as a hammer or a barometer. It is easily seen that these concepts cannot 
be interpreted to refer to 'objective facts,' that is, to things irrespective of 
what people think about them. Careful logical analysis of these 
concepts w ill show that they all express relationships between several (at 
least three) terms, of which one is the acting or thinking person, the 
second some desired or imagined effect, and the third a thing in the 
ordinary sense. If the reader will attempt a definition he w ill soon find 
that he cannot give one without using some term such as 'suitable for' or 
'intended for' or some other expression referring to the use for which it 
is designed by somebody. And a definition which is to comprise all 
instances of the class w ill not contain any reference to its substance, or 
shape, or other physical attribute. An ordinary hammer and a
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between things, and of how to effect the changes we desire, is not articulate but 

tacit knowledge. In the beginning of Wealth of Nations, Adam Smith speaks of the 

"skill, dexterity, and judgment" (p. 7) of workers; these attributes are a kind of 

knowledge, a kinesthetic "knowledge" located in the hands rather than in the head. 

The improvements these skilled workers make in their tools are embodiments of 

that "knowledge." The very design of the tool passes on to a less skilled or 

dexterous worker the ability to accomplish the same results. Consider how the 

safety razor enables unskilled and clumsy academics to shave with the blade always 

at the correct angle, rarely nicking ourselves. How would we manage with straight 

razors? The skilled barber's dexterity has been passed on to us, as it were, 

embodied in the design of the safety razor.

Adam Smith gives a clear example of the embodiment of knowledge in capital 

equipment in his account of the development of early steam engines, on which:

a boy was constantly employed to open and shut alternately the 
communication between the boiler and the cylinder, according as the 
piston either ascended or descended. One of those boys, who loved to 
play with his companions, observed that, by tying a string from the 
handle of the valve which opened this communication to another part of 
the machine, the valve would open and shut without his assistance, and 
leave him at liberty to divert himself with his playfellows, (p. 14)

The tying on of the string, and the addition of the metal rod which was built on to 

subsequent steam engines to accomplish the same purpose, is an archetypal case of

steamhammer, or an aneroid barometer and a mercury barometer, have 
nothing in common except the purpose for which men think they can be 
used. (1979, p. 44)
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the embodiment of knowledge in a tool. The boy's observation and insight were 

built into the machine for use indefinitely into the future.

3.2. Knowledge is of the essence

The point here is more radical than simply that capital goods have knowledge in 

them. It is rather that capital goods are knowledge, knowledge in the peculiar state 

of being embodied in such a form that they are ready-to-hand for use in production. 

The knowledge aspect of capital goods is the fundamental aspect. Any physical 

aspect is incidental.

A hammer, for instance, is physical wood (the handle) and minerals (the head). But 

a piece of oak and a chunk of iron do not make a hammer. The hammer is those 

raw materials plus all the knowledge required to shape the oak into a handle, to 

transform the iron ore into a steel head, to shape it and fit it, etc. There is a great 

deal of knowledge embodied in the precise shape of the head and handle, the 

curvature of the striking surface, the proportion of head weight to handle length, 

and so on.

Even with a tool as bluntly physical as a hammer, the knowledge component is of 

overwhelming importance. With precision tools such as microscopes and 

calibration instruments, the knowledge aspect of the tool becomes more dominant 

still. We might say, imprecisely but helpfully, that there is a greater proportion of 

knowledge to physical stuff in a microscope than in a hammer.

With computer software, on which we w ill be focusing through most of this work, 

we have a logical extreme to inform further this approach to understanding capital 

goods. Software is less tied to any physical medium than most tools. Because we
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may with equal comfort think of a given program as a program, whether it is printed 

out on paper, stored on a diskette, or loaded into the circuits of a computer, we 

have no difficulty distinguishing the knowledge aspect from the physical aspect with 

a software tool. Of course, to function as a tool the software must be loaded and 

running in the physical medium of the computer, and there are definite physical 

limits to computation. (Bennet 1985) Nevertheless, it is in the nature of computers 

and software to separate clearly the knowledge of how to accomplish a certain 

function from the physical embodiment of that knowledge.

The distinctness of the knowledge embodied in tools from the physical medium in 

which it is embodied was brought out in an remarkable exchange between two 

engineers working on a moonshot. One, literally a rocket scientist responsible for 

calculating propulsion capacity, approached the other, a software engineer. The 

rocket scientist wanted to know how to calculate the effect of all that software on 

the mass of the system. The software engineer didn't understand; was he asking 

about the weight of the computers? No, the computers' weight was already 

accounted for. Then what was the problem, asked the software engineer. "Well, 

you guys are using hundreds of thousands of lines of software in this moonshot, 

right?" "Right," said the software engineer. "Well," asked the rocket scientist, "how 

much does all that stuff weigh?" The reply:"... Nothing!!"13

Because the knowledge aspect of software tools is so clearly distinguishable from 

their physical embodiment, in investigating software capital we may distinguish 

clearly the knowledge aspects of capital in general. While software may seem very

13 Personal conversation with Robert Polutchko of Martin Marietta Corp.
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different from other capital goods in this respect, when we think in terms of the 

capital structure, we find no fundamental difference between software tools and 

conventional tools. What is true of software is true of capital goods in general. 

What a person actually uses is not software alone, but software loaded into a 

physical system -  a computer with a monitor, or printer, or plotter, or space shuttle, 

or whatever. The computer is the multi-purpose, tangible complement to the 

special-purpose, intangible knowledge that is software. When the word-processor 

or computer-assisted design (CAD) package is loaded in, the whole system becomes 

a dedicated writing or drawing tool.

But there is no important difference in this respect between a word-processor and, 

say, a hammer. The oaken dowel and molten steel are the multi-purpose, tangible 

complements to the special-purpose, intangible knowledge of what hand tools are. 

When the knowledge of what is a hammer is imprinted on the oak in the shape of a 

smooth, well-proportioned handle, and on the steel in the shape, weight, and 

hardness of a hammer-head; and when the two are joined together properly; then 

the whole system -  raw oak, raw steel, and knowledge -  becomes a dedicated nail- 

driving tool.

All tools are a combination of knowledge and matter. They are knowledge 

imprinted on or embodied in matter. Software is to the computer into which it is 

loaded as the knowledge of traditional tools is to the matter of which those tools are 

composed.

If this is true, then knowledge is the key aspect of all capital goods, because the 

matter is, and always has been, "there." As Bohm-Bawerk says in discussing what it 

means to produce:
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To create goods is of course not to bring into being materials that never 
existed before, and it is therefore not creation in the true sense of the 
word. It is only a conversion of indestructible matter into more 
advantageous forms, and it can never be anything else. (1959, p. 7)

Mankind did not develop its fabulous stock of capital equipment by acquiring new 

quantities of iron and wood and copper and silicon. These have always been here. 

Mankind became wealthy through developing the knowledge of what might be 

done with these substances, and building that knowledge onto them. The value of 

our tools is not in their weight of substances, however finely alloyed or refined. It is 

in the quality and quantity of knowledge imprinted on them. As Carl Menger says 

in his Principles14:

Increasing understanding of the causal connections between things and 
human welfare, and increasing control of the less proximate conditions 
responsible for human welfare, have led mankind, therefore, from a state 
of barbarism and the deepest misery to its present stage of civilization 
and well-being.... Nothing is more certain than that the degree of 
economic progress of mankind w ill still, in future epochs, be 
commensurate with the degree of progress of human knowledge.

3.3. Varieties of knowledge embodied in capital

In the above passage Menger asserts a dependency of economic progress on 

progress of human knowledge. This sounds simple. Perhaps it would be simple if 

knowledge were a simple, homogeneous something which could be pumped into a 

society as fuel is pumped into a tank. But knowledge is heterogeneous; it is not all 

of a kind. (Polanyi 1958, Hayek 1945, Lachmann 1986) There are important 

differences among different kinds of knowledge.

14 (1981, p. 74). See also Vaughn (1990).
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Articulate and inarticulate knowledge

An important distinction in this respect is between articulate and inarticulate 

knowledge. Some of our knowledge we can articulate: we can say precisely what 

we know, and thereby convey it to others.15 But much of our knowledge is 

inarticulate: we cannot say what we know or how we know it. Hence we cannot 

explicitly convey that knowledge to others, at least not in words. The experienced 

personnel officer cannot tell us how she knows that a certain applicant is unfit for a 

certain job; she has "a feel for it." The skilled pianist cannot possibly tell us how to 

play with deep expressiveness, although he clearly knows how. A child cannot 

learn to hit a baseball from reading about it in a book, although the book might 

help.

Furthermore, much of what we know we are not aware that we know. In such 

cases we do not become consciously aware of our knowledge until it is somehow 

brought to our attention, perhaps by our being asked to behave in a way that 

conflicts with that knowledge. "Let's do such and such," we are asked. "No, that 

won't work," we reply. "Why not?" "Well, it won't..," we say, but we can't really 

say why until we have had time to think about it, and become explicitly aware, for 

the*first time, of what we have long known. In this respect I remember my high 

school physics teacher telling our class that we all "knew" the Doppler effect -  that 

the sound made by a moving object sounds higher pitched to us when the object is 

approaching, and sounds lower-pitched when the object is moving away. He

15 Those other, of course, bringing to our words different experience and outlook, 
w ill understand what we say somewhat differently from the way we do.
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smiled and made the sound every child makes when imitating a fast car going past. 

Sure enough, the pitch goes from higher to lower -  of course, I knew that; but I had 

not known that I knew it.

Personal and intersubjective knowledge

There is also an important variety in what we may call the locations of knowledge.

It may be internal -  located within a person -  or external, embodied in some 

intersubjective medium -  located, as it were, among people, and therefore available 

for common use. In each of these locations there can be both articulate and 

inarticulate knowledge. I know my own verbalized thoughts and plans for the day, 

facts I learned in school, my phone number, etc. This is articulate knowledge in my 

own mind. Articulate knowledge can also be located externally, intersubjectively, 

in a form in which it can be transferred among people. This is the case with books, 

libraries, manuals, "for sale" signs, etc.

As we have seen, internal, personal knowledge may also be inarticulate. Most of 

our physical skills are of this kind. Our habits seem to represent a kind of 

inarticulate knowledge (in our habitual looking both ways before we cross streets is 

the knowledge that streets are dangerous), as do rules of thumb ('honesty is the best 

policy," "get it in writing"), and social mores (waiting in line in crowded settings).

Extremely important kinds of knowledge are both inarticulate and external to 

individuals. Social institutions embody this kinds of knowledge. Language, for 

example, embodies a great deal of shared knowledge, accumulated over ages 

through interactions among people. As F.A. Hayek has stressed, there is a 

tremendous amount of knowledge in market prices. (1945) Don Lavoie has
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developed this view (1985, Chapter 3), speaking of a "social intelligence" that 

emerges out of the interactions of people, which the society as a whole has, but no 

individual has.

In this category of inarticulate knowledge located external to individuals, and thus 

available to be shared among individuals, is much of the knowledge embodied in 

tools. The crucial knowledge referred to by Menger above is of a kind we don't 

often think of as knowledge. It is not to be found in libraries or in books or in 

written words at all. Rather it is to be found in the designs of the tools we use. 

Much of it is inarticulate. Some may once have been articulated, but the 

articulation is now lost. Much may never have been articulate at all. Consider, for 

example, the ratio between the weight of a hammer head and the length of the 

handle. Hammer makers "know" the acceptable bounds of this ratio. How do they 

know? They know because the experience of generations has been handed down 

to them. Users of hammers, ages ago, found hammers with handles too long or too 

short to be uncomfortable; they discarded these and used the proper-sized ones 

instead. They could not have said why they did so -  they knew with their hands 

and arms, not with their heads. When they selected new hammers, they chose the 

ones with the "correct" ratio. From these choices hammer makers learned what the 

correct ratio was. The knowledge was gradually built into hammers over time, in 

an evolutionary fashion that depended on feedback from users. (Salin 1990)

A significant proportion of the knowledge we use in production is not in any person 

or even group, but in the tools we use. I who use the hammer know nothing of 

ergonomics, and have not the slightest idea what the correct ratio of head weight to
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handle length is. Nevertheless, when I drive a nail, I can tell if the hammer feels 

right. Thus I use that knowledge. The knowledge is built into my hammer.

Kinds of knowledge used in the production of capital goods

We can distinguish three categories of knowledge that seem necessary in the 

development of new capital goods. Knowledge from each of these categories is 

embodied in every capital good.

1. Knowledge of function

The first category is simple: knowledge of what the tool must be able to accomplish 

-  its function. What is this tool supposed to be able to do? Consider the 

development of the plow, for a simple example. Before plows can be developed, 

there must be farmers with the knowledge of what plows must do: turn over earth. 

Generally this function, whatever it might be, is only one part of a larger process 

involving other tools and processes. Accordingly, knowledge of function must 

include knowledge of the more encompassing production process of which this 

new tool w ill be a part.

2. Knowledge of design

The next category is more complex: knowledge of what style of tool might 

accomplish this -  its design. Given the desired function, we need to know what 

kind or kinds of devices can accomplish that function. The farmer knows he needs 

earth turned over; now is needed knowledge of what kinds of devices, such as 

sharp, hard metal wedges, will turn over earth. This knowledge itself w ill be multi

faceted.
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Because we are thinking in the context of a production process, this knowledge 

must comprise not only what that tool must do by itself (if, indeed, that has any 

meaning), but what might be contributed by other capital inputs so that the 

production process as a whole is successful. That is, what are the complementary 

capital goods and human capital (e.g. people's skills and techniques for effectively 

using such tools, as well as their habits and preferences) with which this sort of tool 

might work? Depending on the state of agriculture and mechanics, for the plow 

designer this might be knowledge of draft horses and harnesses, or of large tractors 

and hydraulics. The design of the plow will be influenced significantly by these 

complementarities, that is, knowledge of these complementarities must be built into 

the plow itself. The nature of the complementary goods w ill impose constraints on 

the design of the new tools, which must be made to fit. E.g., w ill the plow be 

attached to draft horses by leather harness, or to a tractor by a hydraulic yoke? W ill 

the plow be guided all day by hand through the uneven turf, so that it must be light 

enough for a (strong) plowman to handle, or w ill hydraulics control the plow's 

angle of attack, so that a small boy with a good eye may direct a whole gang of 

plows from a tractor seat?

Not infrequently, important knowledge to be built into new capital goods w ill be 

not so much of extant complementary goods as of goods which are likely to exist by 

the time the new tool is actually produced. As technology continually leaps 

onward, tool designers seem to plan their products in an anticipatory fashion: they 

design new production goods with an eye to the necessary complementary goods 

that seem likely to become available. The longer the period between design and 

production, the more aggressively it makes sense to anticipate. We see this 

anticipation clearly in the software industry. Large applications with demanding
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speed and memory requirements are designed well before such speed and memory 

are affordable to the software's target audience. The software developers are willing 

to plan so aggressively in the expectation that the price of processing power and 

memory w ill continue to fall at rapid rates.

A valuable element of design knowledge that may be brought to the design of a 

new tool is knowledge of how to make the design itself readily adaptable, so that 

when the inevitable changes in conditions and complementary goods occur, it w ill 

be relatively easy to alter the design as necessary. This is characteristic of what we 

might call effective flexibility. We will have much to say about it in Chapter 4.

3. Knowledge of construction

The third category is knowledge of how to construct such a tool, how to effect that 

design -  its construction. The designer might see that his design w ill serve the 

purpose called for, and yet not know how to build what he has designed. I might 

design a baseball bat, for instance, specifying the kind of wood to be used and 

laying out the exact shape in a drawing. But I don't know how to use a lathe.

Before the bat could come to be, another kind of knowledge than mine is required: 

the knowledge of how to take a fully worked out bat design and embody that in 

actual wood. The plow designer might specify precisely the shape and hardness of 

the blade, yet have no idea of how actually to produce it. The actual plow must 

ultimately embody also the knowledge of those who operate (and of those who 

designed) the forge in which the plow is cast. Implicitly, then, construction 

knowledge comprises knowledge of the higher-order tools, as well as raw and 

intermediate inputs, with which the new tool might be built.
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Of course there is often a lot of overlap between knowledge of design and 

knowledge of construction. Designers generally need to be cognizant of what 

construction techniques are available, and often the availability of newer and better 

techniques w ill inspire and inform new kinds of designs. But the two kinds of 

knowledge are categorically different. Indeed, it is possible to design things which 

cannot be built, given the present state of materials and engineering technique. 

(Drexler 1991) We might design a variation on a spider web, for example, 

specifying spider's silk as the construction material. While there would be no 

ambiguity in the design, that design could not be built, because humans cannot yet 

produce spiders' silk. One might design a plow, say, one tenth the weight of 

current steel plows, and ten times harder and stronger, but such a design could not 

yet be built because we do not know how to produce such a material.

3.4. A subjectivist view of capital

Before going further, let us set out more explicitly what is meant by capital. In 

keeping with the tradition of the Austrian School, we take a subjectivist viewpoint, 

and insist that to be capital, something must be treated as capital, that is, treated as 

some kind of input in the production process. Lachmann writes,

Beer barrels and blast furnaces, harbour installations and hotel-room 
furniture are capital not by virtue of their physical properties, but by 
virtue of their economic functions. Something is capital because the 
market, the consensus of entrepreneurial minds, regards it as capable of 
yielding an income, (p. xv)

Something need not be physical to be capital. An obsolete railroad engine, though 

blatantly physical, is not capital once it is abandoned and forms no part of any 

production plan. On the other hand, something without physical properties, such
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as a set of sound construction processes, or a successful design type, or the 

experience of skilled designer or craftsman, is capital because it is used (consciously 

or unconsciously) as an input in the production process. Something is capital 

insofar as it is an input into a production process. Hence knowledge can be capital 

if it is treated as a (scarce) input in a production process.

As Bohm-Bawerk said, capital is "the produced means of production."16 "Produced" 

suggests some directed activity to accumulate the knowledge as a means of 

production. Bohm-Bawerk defines capital as "nothing but the sum total of 

intermediate products which come into existence at the individual stages of the 

roundabout course of progression (sic; "production"?)." (1959, p. 14) Again, 

"intermediate product" suggests something produced, something intended to be 

produced, as an intermediate good. Knowledge produced for use in production is 

capital.

3.5. Varieties of embodiment of knowledge

For knowledge to be capital, it must be usable in production. Accordingly it must 

be "stored up" in some sense, embodied, brought together in a form in which it w ill 

be more or less handy, ready to use in a production process. There are a number of 

ways in which this knowledge may be embodied.

As the language we use here is potentially misleading, let us take a moment to 

clarify: Capital is embodied knowledge; yet it need not have any physical aspect:

16 But as Lachmann points out, "the question which matters is not which resources 
are man-made, but which are man-used." (1978, p. 11)
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the knowledge need not be embodied in any physical body. By embodiment we 

mean a metaphorical embodiment. Knowledge becomes capital as it is sorted out 

and "put away" somewhere where it w ill be ready to hand -  available and ready to 

be used -  when production time comes along. By embodied, we mean 

synthesized, localized, put in order, focused in a manner that w ill make it usable in 

the anticipated production process. Wherever, or in whatever, the knowledge is 

"put away," that is the thing in which it is embodied.

Knowledge may be embodied only in tacit form, in people's orientations. Standard 

practices and rules of thumb fall into this category. It may also be embodied in 

persons' minds and motor nervous systems. This is human capital -  background 

knowledge, familiarity, skills and experience.

Knowledge may be embodied in texts of some kind -  symbols largely 

unconstrained by physicality. In this category are procedures, software, recipes.

The medium to which the text is written is quite independent of the text itself. E.g., 

the maintenance procedure for a machine may be posted on the wall above the 

machine, or kept in the minds and habits of the foreman and machine operators. A 

favorite recipe can be written down, or kept in one's head. A computer program is 

essentially the same whether typed on a computer's screen editor, printed out on 

paper, compiled into executable form in the circuits of some particular computer, or 

stored on a disk or tape. What is important is that it is embodied in some stable 

medium, accessible to a number of people, so that it may be used.

And of course the knowledge may be embodied in materials, as in our examples 

above of the plow, the hammer, and the computer program actually loaded into a 

computer's circuits and running.
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4. Capital goods and division of knowledge across time and space

There is a distinctly social nature to capital goods, and the capital structure which 

they compose (along with a host of supporting institutions and shared cultural 

understandings). Most individual capital goods are manifestations of a far-flung 

division of knowledge, an almost incomprehensibly extensive sharing of knowledge 

and talent across time and space. The ever-changing pattern of the interactions of 

these capital goods -  the capital structure as a whole -  is certainly beyond our 

grasp. It is a part of what Hayek called "the extended order of human cooperation." 

To pursue further this idea that capital goods and the capital structure manifest a 

profound social interaction, let us consider Adam Smith's discussion of the division 

of labor, to which he attributed the lion's share of human progress.

Recall Smith's case of improvement to the steam engine, which grew out of a small 

boy's observation that he could tie a piece of string from the handle he was 

assigned to operate to another part of the machine, and so get the action of the 

machine to do his job for him. Subsequently this insight was built into the design of 

steam engines. When, in cases such as this, knowledge is built into a piece of 

capital equipment so thoroughly that an actual person is no longer required, what 

has happened to the division of labor? Has it decreased? The little boy is no longer 

at work at the steam-engine. Does his departure diminish the division of labor 

present in that production process? Are there, in a sense, fewer people 

contributing?

It appears that what Adam Smith meant by the division of labor was the division, 

among a number of different people, of all the tasks in a particular production
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process. Given a number of tasks which are visibly part of the production process, 

the fewer the instances in which the same person carries out more than one of those 

tasks, the greater the division of labor. This view is evident in Smith's remarks on 

agriculture:

The nature of agriculture, indeed, does not admit of so many 
subdivisions of labour, nor of so complete a separation of one business 
from another, as manufactures. It is impossible to separate so entirely, 
the business of the grazier from that of the corn-farmer, as the trade of 
the carpenter is commonly separated from that of the smith. The spinner 
is almost always a distinct person from the weaver; but the ploughman, 
the harrower, the sower of the seed, and the reaper of the corn, are often 
the same. (1976, pp. 9-10)

Here Smith focuses on division of labor among those directly involved in a 

production process: how many laborers are involved at that time and place, given 

the tools they have. We take issue with Smith, holding that the division of labor is 

better understood as the whole pattern of cooperation in production, direct and 

indirect. The indirect contributions are, in an advanced economy, the most 

significant. As Carl Menger pointed out, the crucial "labor" is the creative effort of 

learning how,17 and the embodying of that learning in a tool design that can be 

used by others, who themselves lack the knowledge in any other form. We really 

do better to speak of the division of knowledge rather than the division of labor.

Axel Leijonhufvud makes clear the importance of the division of knowledge in his 

article, "Information Costs and the Division of Labor" (1989). He invites us to 

consider a medieval serf, named Bodo, and asks "Why was he poor?" Leijonhufvud

17 (Menger 1981). For a discussion of Menger's criticism, see Vaughn (1990).
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argues, "Bodo was poor because few people co-operated with him in producing his 

output and, similarly, few people co-operated in producing his real income, i.e. in 

producing for his consumption" (p. 166). The cooperation need not be on the same 

spot and at the same time to be relevant. Indeed, as an economy advances, the 

pattern of cooperation spreads out spatially and in time.

Our rich twentieth century representative man, then, occupies a node in 
a much larger network of co-operating individual agents than did poor 
Bodo. His network, moreover, is of very much larger spatial extent. The 
average distance from him of those who contribute to his consumption 
or make use of his productive contribution is longer. Similarly, his 
network also has greater temporal depth -  the number of individuals 
who i  periods into the past made a contribution to his present 
consumption is larger than in Bodo's case. (Leijonhufvud 1989, p. 166)

In his comments on the division of labor in agriculture, Smith neglects the division 

of knowledge and of labor implicit in the tools the farmers use. The plough, the 

harrow, and the scythe (or in our day the John Deere combine18), themselves 

represent an extensive division of labor and, more importantly, of knowledge. To 

be consistent with his suggestion in the quoted passage, Smith would have to assert 

that there is less division of labor represented in the present day manufacture of 

pins, in which (if I guess correctly) hundreds of thousands may be made in a day in 

a fully mechanized process overseen by one technician at a computer terminal, 

than in the factory of which he wrote. But the fact that there is now only one 

person there on the spot does not mean there is no division of labor in pin-making.

It illustrates, rather, that the division of labor is now more subtle: it is manifested not

18 ...which reaps scores of acres in hours, while its driver sits in air-conditioned 
comfort listening to W illie Nelson in stereo.
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in many workers, but in very sophisticated tools to which many creative workers 

have contributed their special knowledge of the steps (what used to be the tasks) 

involved in pin-making. Today's equivalent of Smith's division of labor is 

manifested in a complex division of knowledge embedded in a deep pin-making 

capital structure.

As Thomas Sowell has observed, "[T]he intellectual advantage of civilization ... is 

not necessarily that each civilized man has more knowledge [than primitive 

savages], but that he requires far less." (1980, p. 7, emphasis in original) Through 

the embodiment of knowledge into an extending capital structure, each of us is able 

to take advantage of the specialized knowledge of untold others who have 

contributed to that structure. The structure becomes increasingly complex over 

time, as the pattern of complementary relationships extends.19

In capital-intensive, modern production processes, the division of knowledge and 

labor is to be found not in the large number of people at work in a particular 

production process, but in the tools used by a very few people who carry out that 

process. The knowledge contribution of multitudes is embodied in those tools, 

which give remarkable productive powers to the individual workers on the spot.

The little boy is there in a modern steam engine, his knowledge embodied in the 

valve-control rod. The farmer at his plough is empowered by the knowledge and 

labor of hundreds of others, who designed his plough and hardened its steel, who 

developed his tractor, who learned how to refine its fuel, etc.

19 Lachmann credits Hayek (1935) with "reinterpreting the extended time 
dimension of capital as an increasing degree of complexity of the pattern of 
complementarity displayed by the capital structure." (1975, p. 4)
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The point is emphasized by Bohm-Bawerk, who in the following passage could be 

responding to Smith's above comments on agriculture:

...the labor which produces the intermediate products... and the labor 
which produces the desired consumption good from and with the help 
of the intermediate products, contribute alike to the production of that 
consumption good. The obtaining of wood results not only from the 
labor of felling trees, but also from that of the smith who makes the axe, 
of the carpenter who carves the haft, of the miner who digs the ore from 
which the steel is derived, of the foundryman who smelts the ore. Our 
modern system of specialized occupations does, of course, give the 
intrinsically unified process of production the extrinsic appearance of a 
heterogeneous mass of apparently independent units. But the theorist 
who makes any pretensions to understanding the economic workings of 
the production process in all its vital relationships must not be deceived 
by appearances, his mind must restore the unity of the production 
process which has had its true picture obscured by the division of labor.
(1959, II, p. 85)

What a difference there is between the meaning Bohm-Bawerk attaches to the 

division of labor in this passage and the view suggested by Adam Smith in his 

comments on agriculture. For Bohm-Bawerk, the division of labor is extended 

down time and across space. The miner of the ore is "there," in a sense, as the 

lumberjack fells trees with steel made from that ore. In an advancing economy, the 

division of knowledge is an ever-widening system of cooperation in which are 

developed new tools and processes whereby each person may take advantage of the 

knowledge of an increasing number of his or her fellows. The division of 

knowledge is manifested in the tools we work with, which embody the knowledge 

of many.
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5. Capital structure

Capital exists and works within a structure. (Lachmann 1978, Hayek 1941) It is an 

ever-evolving structure to be sure -  it is never static -  but at any time the 

relationships among capital goods, and among capital goods and human capital, are 

essential. Of the various perspectives we might take on the capital structure, three 

will be important to us. One looks at the relationships of complementarity between 

capital goods used jointly in a production process; another looks at relationships of 

dependency between capital goods, one or more of which are used in producing 

another; a third looks at the different categories of capital which are involved in 

production processes.

5.1. Complementarity of the essence

We have said enough already of the importance of complementarity so that we 

need not discuss the point at length. Let us merely reemphasize it. Lachmann says,

It is hard to imagine any capital resource which by itself, operated by 
human labour but without the use of other capital resources, could turn 
out any output at all. For most purposes capital goods have to be used 
jointly. Complementarity is of the essence of capital use. But the 
heterogeneous capital resources do not lend themselves to combination 
in any arbitrary fashion. For any given number of them only certain 
modes of complementarity are technically possible, and only a few of 
these are economically significant, (p. 3, emphasis in original)

Programming languages run only on certain kinds of computers. A complex 

programming environment such as the object-oriented system Smalltalk requires 

further that the computer e equipped with a mouse, and a high-resolution display. 

The various graphical user interface builders for Smalltalk run only where certain
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specific versions of Smalltalk are present. These are very powerful tools, but usable 

only if the necessary complementary goods are present.

We w ill devote a whole chapter, Chapter 4, to the subject of capital maintenance.

In the present context it is important to point out that the challenge of capital 

maintenance has fundamentally to do with complementarity. Capital exists and 

functions in a structure in which complementarities are fundamentally important, 

and the capital structure evolves over time as old tools and processes are 

supplanted by new. Consequently, for any particular (kind of) capital good, 

maintenance is very much a matter of maintaining its complementarity to the rest of 

the changing capital structure. Hence maintenance may mean not only preventing 

any change through deterioration, but actually changing that (kind of) good directly, 

in a manner that adapts it to the changing capital structure around it, and thereby 

delays obsolescence.

Because change is pervasive, how a particular (kind of) capital good is used will 

inevitably change. As Hayek has pointed out, (1935) capital maintenance is often 

more a matter of maintaining the value of capital than merely preventing decay.

But because value depends on position in a changing capital structure, maintaining 

value may mean changing the good more than preserving it as is.

Software, of course, does not deteriorate. (A diskette may, but a diskette is 

software's storage medium, not software itself.) Yet programmers speak of "bit rot," 

that creeping incompatibility that erodes software's usefulness as the environment 

changes -  with new computers, peripherals, operating systems, etc. -  and the code 

does not. This is purely a matter of complementarity. To maintain the value of a 

piece of software, even when what it does stays exactly the same, requires changing
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that software to keep it complementary to the changing capital goods with which it 

must work.

The point applies to capital goods generally. As tractors replace horses and oxen, 

plows must be equipped with different attachments, and ganged two, three or more 

abreast to take advantage of the greater power. As microwave ovens become 

popular, some kinds of cookware must be made microwave-safe. There may be a 

great deal of consistency in essential features of the designs: the geometry and 

hardness of the plow blades, and the shape, weight, and appearance of the 

cookware may remain the same. But if the plow and cookware makers are to stay 

in business, if their products are to be valued and used in the newly-evolved 

production processes, then they must be altered appropriately. To maintain the 

value of different (kinds of) capital goods is to change them as necessary to maintain 

their complementarity to the evolving capital structure in which they play a part.

5.2. Orders of capital goods

It is useful to think of capital in terms of orders of goods,20 consumer goods being 

goods of the first order, and capital goods being goods of higher orders. As the 

capital structure lengthens, we develop tools for producing tools for producing 

tools... The better the tools at each stage, the better and more cheaply we may 

produce the goods at the next lower stage. Menger stressed the importance of 

lengthening the capital structure:

20 See Mises (1966, pp. 93-4)
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Assume a people which extends its attention to goods of third, fourth, 
and higher orders... If such a people progressively directs goods of ever 
higher orders to the satisfaction of its needs, and especially if each step 
in this direction is accompanied by an appropriate division of labor, we 
shall doubtless observe that progress in welfare which Adam Smith was 
disposed to attribute exclusively to the latter factor, (p. 73)

Improvements in tools (and related processes) of high order are very important to 

economic development, because those improvements can be leveraged throughout 

the production process.21

Frequently, there is a kind of recursion involved, in that developments at one stage 

make possible developments at another stage, which can in turn improve processes 

at the first stage. Better steel, for example -  the product of a steel mill, makes 

possible the construction of better steel mills. The availability of the language 

Smalltalk made possible the user interface builder WindowBuilder, which is itself 

an improvement to Smalltalk.

We w ill be interested in most of what follows with goods of fairly high order, in 

particular, with in large part with tools for the design of tools. To clarify this point, 

we need to consider the different categories of capital inputs to a production 

process.

21 The very fact that there are orders of capital goods calls into question Romer's 
assumption that new capital goods have an additively separable effect of output. 
There is always dependency of lower order goods on the higher order goods that 
produce them; hence treating these goods as separable in their effects is 
nonsensical.
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5.3. Categories of capital goods

What are the categories of capital goods at work in production processes? We will 

distinguish first between fixed capital: "producer durables" such as tools and 

machinery; and working capital: raw materials or intermediate goods, or goods in 

process. Examples come readily to mind when we envision a production process.

In the steel mill the mill machinery is the fixed capital, the iron ingots and molten 

metal are the working capital. In a bakery, the baker's oven and rolling pin are the 

fixed capital, the flour and dough are the working capital. In a business context, we 

might think of the word processor and spreadsheet program as the fixed capital, and 

a company's raw data as working capital, to be processed by the spreadsheet into, 

say, a meaningful report.

But this capital does not work by itself. In order to be productive, it must be put in 

motion and directed by people according to some plan, in a set of procedures. 

Accordingly, to our list of categories we add procedures. These three are 

inextricably interrelated, because the procedures will be couched in terms of what 

the tools do to the materials. You can't have procedures without the other two. 

These procedures can be stored (embodied) in a variety of ways, e.g., in written 

documents, in the "human capital" of a skilled worker's mind, muscles, or senses, 

in machines which embody them (as a grain combine combines cutting and 

threshing in sequence), and even in rituals.

An illuminating example of a procedure stored in a non-material fashion is that of 

the ritual of sword-making in ancient Japan:

|T]he techniques that produce the special properties of steel... reach 
their climax, for me, in the making of the Japanese sword, which has
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been going on in one way or another since AD 800. the making of the 
sword, like all ancient metallurgy, is surrounded with ritual, and that is 
for a clear reason. When you have not written language, when you have 
nothing that can be called a chemical formula, then you must have a 
precise ceremonial which fixes the sequence of operations so that they 
are exact and memorable....

The temperature of the steel for this final moment [when it is plunged 
into water to cool] has to be judged precisely, and in a civilisation in 
which that is not done by measurement, "it is the practice to watch the 
sword being heated until it glows to the colour of the morning sun." 
(Bronowski 1973, pp. 131-33)

Some kinds of computer programs embody procedures, e.g. those that direct 

automated assembly on an assembly line.

Fixed capital, working capital, and procedures -  is that all? No. These three imply 

some purpose, some end being aimed at. Our procedures for applying tools to raw 

materials aim at producing something. This something must be conceived, more or 

less fully. To put it another way, it must be more or less fully designed. So the 

producers in a production process must have some implicit or explicit design to 

inform the whole process. This design, this conceptualization or description of 

what is aimed at, is what guides the procedures.

In this category are sketches and detailed blueprints and specifications, CAD 

pictures in all the range of possible detail, vague mental pictures, detailed models, 

software prototypes and completed code, and generally accepted definitions. 

Examples are "steel rail," which design (probably in the form of a detailed 

specification) informs the procedures of the steel mill, "loaf of bread," which 

informs the procedures of the baker, and some notion of a report on profitability 

projections, which informs the procedures of the business analyst.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

51

Thus we have four elements of production processes: 1) tools or fixed capital, 2) 

raw or intermediate material, or working capital, 3) procedures for applying the 

tools to the raw or intermediate goods, and 4) designs which inform the procedures.

6. Capital development as a social learning process

Consider the implied context of the above discussion. We spoke of production 

processes, implicitly, of known production processes aimed at producing known 

goods. The designs of which we spoke, which inform the procedures directing 

fixed capital in processing working capital, are themselves implicitly known. But 

this begs an important question: where do the designs come from? How are they 

produced? What is the process by which they come to be?

It is important here to draw a clear distinction between producing designs for goods, 

and producing individual instances, real cases, of those designs, because the 

production processes are different. And, living as we do in a physical world, where 

physical instances catch our eye, it is easy to overlook the production of designs, 

and see only the production of instances. Economics, certainly, has overlooked the 

production of designs, by and large assuming it away: standard models assume 

"given technology" or use of the "best available technology." But for our purposes - 

- investigating how the capital structure develops and improves -  it is essential to 

focus on production of designs as an activity different from the production of 

particular goods embodying those designs.

Let us clarify the distinction by contrasting our common conceptions of producing 

cars, on the one hand, and of producing software, on the other. When we think of
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GM producing cars, we think of their work creating new instances of extant designs. 

True, GM employs many designers, who design new cars, but we don't think of 

that; we think of the assembly line, spot welding, riveting, bolting, etc.: the hard 

work of realizing these designs -  imprinting the design on metal and rubber and 

glass so that a new instance of the design -  a new car -  comes to be.

When we think of Microsoft's work producing software, by contrast, we think of 

programmers writing code -  creating new designs (or enhancing older designs). 

True, Microsoft employs people who store the programs onto diskettes, thus in a 

sense creating instances of the extant designs; but we don't think of that; we think of 

the late nights at the terminal designing, coding, revising, running, debugging, etc.: 

the hard work of creating new software -  new designs, specific instances of which 

will eventually be copied in mass onto diskettes and distributed.

The point here is not that design in unimportant in heavy industries such as 

automobile manufacturing.22 Not at all. In fact, we hold that design is just as 

important in such industries as in software. Indeed, by way of example, the design 

process for the GM-10 line of cars at General Motors was allocated $7 billion and 

five years. (Womack et. al. 1990, pp. 104-6) The point is that design of capital 

goods and what we w ill call their instantiation -  the creation of actual instances of 

those designs -  are fundamentally different from the analytic viewpoint. In practice 

we cannot always separate the two, because design and instantiation frequently 

occur simultaneously, but in principle they are different kinds of activities; they aim

22 Indeed, product design in manufacturing industries is receiving a lot of attention. 
See Wheelwright and Clark (1992), and Womack et. al. (1990).
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at different goals. Design is concerned with the known, instantiation with the 

unknown. Design is a matter of bringing together knowledge of how to accomplish 

productive purposes that has not yet been brought together in that manner; 

instantiation is a matter of imprinting a design onto a different medium. To design a 

capital good is to work out fully what it should be, to instantiate such a capital good 

is actually to bring it into physical being.

Because design is a process of bringing together and embodying productive 

knowledge in a handy, ready-to-use form, design is a learning process. Because that 

knowledge is of different kinds and widely dispersed among different people and 

institutions, design is a social learning process -  it depends on the interaction of a 

number of people. Capital is embodied knowledge. The designing of capital, the 

developing of the capital structure, is a social learning process whereby the 

knowledge gets embodied in usable form.

What is the nature of this process? What makes it go forward better or worse? We 

turn now to an examination of software development, in order to find some answers 

to these questions.
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Chapter 2

A Short History of Software Development

Yet I doubt not through the ages one increasing purpose runs,
And the thoughts o f men are widened with the process o f the suns.

- Tennyson, Locksley Hall"

... it's taken us years to understand just how hard it is to build  good 
software. Developing robust, large-scale software systems that can 
evolve to meet changing needs turns out to be one o f the most 
demanding challenges in modern technology.

- David Taylor23

1. Introduction

The goal of the remainder of this work is to understand better the manner in which 

the capital structure expands and improves. Our contention is that the most 

important characteristic of capital for growth and development is the knowledge 

embodied in the things we think of as capital. We study software because software 

is a kind of capital good in which knowledge is peculiarly evident. Software is 

almost pure knowledge. With software it is easy to see the distinction between 

design and instantiation that is inherent is all goods. Designing software -  bringing 

together the relevant knowledge of how a computer may be programmed for some 

purpose, and embodying this knowledge in code -  is challenging. In this, software 

is like other goods: designing effective capital goods is of any kind is challenging.

23 (1990, p. 2)
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In regard to instantiation, however, software is very different. Instantiating a 

program -  creating an instance or another copy of it -  is utterly simple. It can be 

done in microseconds, with a couple of keystrokes. It requires no factories, no steel 

or glass or plastic. (Indeed, one of the obstacles to vigorous markets in software 

capital, as we w ill see in Chapter 5, is the challenge of establishing and defending 

property rights to goods that can be copied at virtually no cost.) Because with 

software this crucial knowledge aspect is so distinct from the physical, by studying 

software development we can focus on the knowledge aspects of capital and capital 

development without distraction. By studying software development, then, we 

hope to learn more about how the capital structure in general expands and 

improves.

Because economists who read this work may be unfamiliar with software 

development, at this point we devote a short chapter to orienting those readers with 

a brief historical overview of software development processes and tools, and how 

they have evolved. The chapter is essentially an introduction to the empirical part 

of the dissertation for those unfamiliar with computer programming. It introduces 

the main concepts that will, in subsequent chapters, be elaborated and related to 

capital theory and issues of economic development.

We first consider the main forces that have driven the evolution of programming 

practice. Foremost among these is the astonishing fall in prices of computer 

processing power and memory, which has enabled ever larger and more ambitious 

programming projects. Bringing these projects to fruition has not been easy. The 

main challenge, which we take up next, has been managing the software's 

complexity. Doing so is difficult, and a variety of tools and software development
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methodologies have been put into practice to try to meet this challenge; we take an 

overview of these. We finish by introducing object-oriented programming systems 

(OOPS) and related technologies, a relative newcomer to the field that seems to 

hold real promise for enabling coordination in these complex capital structures.

2. Overview

As Lavoie, Baetjer, and Tulloh (1992) have pointed out, the evolution of 

programming practice seems to have been driven by the steady drop in the price of 

computational resources. As processing power, memory, and storage space have 

dropped dramatically in price, people's software ambitions have grown apace. 

Once programming was mainly resource-constrained: with processing power and 

memory scarce and expensive, our programs were necessarily simple, and 

programmers concentrated on making the most of the scarce machine resources. 

After all, if a program was too big, it might not fit into the computer; if it was not 

very cleverly executed, it would take prohibitively long to run. But the resource 

constraint has been relaxed by the prodigious productivity of hardware 

manufacturers. As a result, the programs we have tried to build have become more 

and more ambitious and complex. We can afford -  in respect to memory 

requirements -  to build big programs because memory is cheap. We can afford -  

in respect to processing power -  to demand a tremendous amount of computation 

because our machines are so fast. In short, we can afford -  in respect to physical 

resources generally -  very big, very complex programs. Accordingly, we try to 

build such programs, sometimes with success, sometimes without. But building
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larger programs necessitates coping with increasing complexity on a number of 

areas.

One source of increased complexity arises from the very division of knowledge on 

which major software projects depend. As the software industry has grown in size 

and ambition, software development has of necessity become less and less a solitary 

activity, and more and more a group endeavor, with many people contributing their 

knowledge and talent to the development of a software system. Large projects 

cannot be completed in reasonable time by a single person, especially where a 

variety of specialized capabilities, each depending on quite extensive domain 

knowledge, must be incorporated. Hence team programming. It is not unusual to 

have several hundred programmers all working on the same project. The different 

programmers are often separated both geographically and in time, as they work on 

different parts of a large system in different locales and on different schedules.

Another source of greater complexity is the integration of various functions into one 

software system. There was a time when each application stood more or less alone. 

Now, however, we want our different software tools to "talk to" one another -  we 

want them to complement one another. A simple example is the integration of 

word-processing, spreadsheet, and graphics capabilities: modern word-processors 

import drawings, charts, and tabular data from other programs. A different kind of 

integration is the "embedding" of software into physical machines. "Embedded 

systems" direct machines, sensing and controlling, for example, movements of robot 

arms, temperatures in ovens, and the flow of inventory through a manufacturing 

process.
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Still another source of complexity is networking. Programs were once confined to 

the computer that they ran on. Now, with improved telecommunications and 

computer networking, computation has become very much a social process. It is 

increasingly inapt to say that certain programs runs on "a computer." Frequently, 

they run on several machines at once, their functionality extended across the 

network, with many people interacting through them; such applications are known 

as distributed applications. For example, automated teller systems interlink a host 

of different automated teller machines at many different sites, serving many different 

banks. In the new world of distributed applications, it is said that "the network is 

the computer."

All this increased complexity is problematical. In short, as we have made great 

progress in overcoming the resource constraint on programming, we have a 

encountered a complexity constraint.

3. The Key Challenge: Managing Complexity

The primary constraint on programming today is not physical resources, but the 

limits of our ability to manage complexity. As one software designer puts it, the key 

limitation is "our sheer ability to understand what it is we are trying to do."24

As programs grow in magnitude and complexity, division of knowledge becomes a 

necessity. (Lavoie, Baetjer, and Tulloh 1991a) There is a limit to how much code 

one person can keep in mind and work with at one time, so the task must be split

24 Mark S. Miller, personal conversation.
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up somehow. Merely to get a grasp on what is happening, we have to abstract from 

the whole problem, decomposing it somehow into subsystems and subproblems (of 

succeeding levels) which different people may work on, or the same person at 

different times. This decomposition occurs in various ways, some of which we will 

examine below. But one way or another, large programs must be split up into 

different modules, in order to allow the programmers to focus on the different parts 

of the problem. "This general strategy is known as modular programming, and it 

forms the guiding principle behind most of the advances in software construction in 

the past forty years." (Taylor 1990, p. 3) How the abstraction boundaries are drawn 

is important. Appropriate abstractions provide order and understandability; 

inappropriate abstractions cause problems.

A major problem is incompatibility among modules. Even when only one person is 

working on a complex problem, it is easy to forget, or simply to misunderstand, the 

effect that one module may have on another, and thus to build in unwanted (side) 

effects -  bugs. Much of debugging a program has been to this point a matter of 

ironing out all these unintended interferences of one module with another. As we 

w ill see, better-conceived ways of drawing abstraction boundaries can significantly 

diminish this discoordination.

Of course large projects are often undertaken by large groups of people, with a 

different person or team working on each module, and with a system architect or 

system designer overseeing development at a high level. With this division of 

knowledge not only among different modules but also among people, there arise 

additional coordination problems. These have been explicated well by Fred Brooks 

in his celebrated book, The Mythical Man-Month (1975). Brooks emphasizes the
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importance of communication: the different team members must keep informed of 

what assumptions being made by others, which will affect what they themselves are 

working on. There can be great difficulty in maintaining effective communication 

and clear understandings among the members of a team when the team grows 

large: at some point the sheer cost of maintaining effective communication exceeds 

the value of the additional manpower.

4. The Evolution of Programming Practice

In response to the challenge of managing the ever-increasing complexity of 

software, the software industry has evolved a set of higher-order capital goods and 

corresponding practices to help them build knowledge into software in an orderly, 

effective way. These include new programming languages and a variety of tools 

and processes. They continue to evolve rapidly.

4 ,1  Programming Languages

A primary aid to managing complexity is the development of higher-level 

programming languages. Each new generation of languages gives programmers 

increasing power to express complex relationships by capturing and expressing 

higher-level abstractions. Each gives programmers more freedom from the concerns 

of the computer itself -  such minutia as what value is in what register -  enabling 

them to think more in terms of the problem they are trying to solve and less in terms 

of how the computer operates to solve it. In the earliest days, on machines such as 

ENIAC, "programmers" actually twisted dials and moved connector cables on the 

machine. In place of this physical manipulation now there is machine language.
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Up a level of abstraction from this is assembly language, still highly numerical, 

concerned with the needs of the machine. Gradually, as one passes to higher and 

higher level languages, the code becomes less oriented to the characteristics and 

needs of the machine and more attuned to humans' characteristics and thought 

processes. Accordingly, programmers using these languages can think in terms of 

familiar words which represent aspects of the problem domain they are trying to 

represent, unconcerned with the details of how a particular machine w ill store and 

manipulate bits and bytes.

At the same time higher level languages provide better abstraction capability, they 

provide more discipline -  and hence understandability and coherence -  to the 

code. Somewhat paradoxically, languages which provide programmers great 

freedom provide them with the rope to hang themselves. Programmers learned 

early to write subroutines -  sequences of instructions treated as separate units, 

which can be called from anywhere in a program -  to which they directed program 

flow with GOTO statements. But the unrestricted use of GOTO statements leads to 

"spaghetti code," in which the relationships among different modules are difficult or 

impossible to perceive, making life difficult for anyone, including the original 

programmer, who might come back to this code to work on it. There is a tradeoff, 

in programming, between flexibility and manageability. Languages and techniques 

which allow great virtuosity also allow code to be made incomprehensible. 

Languages and techniques which limit also discipline, and thereby lead to more 

understandability.

Structured programming languages respond to this tradeoff by providing 

programmers a relatively small but comprehensive set of functions for directing
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program flow, so that the underlying structure of the program is much more clear 

and understandable. But structured programming languages still share a common 

pool of data. While the functions that the program performs are separated into 

clearly-structured, separate routines, all the data that the program uses is centralized 

and accessible to any of those routines. As a consequence, one routine too 

frequently changes data structures in a manner not anticipated by other routines, 

leading to nonsense -  bugs.

A recent response to this difficulty (and others) is object-oriented languages.

Because these seem to constitute a fundamental change of approach, we w ill take 

them up in some detail in the last section of this chapter.

4.2. Development methodologies

Along with programming languages have evolved various software development 

methodologies. A methodology is set of procedures that a software development 

organization follows (or tries to follow) in producing new software. Again, in the 

early days, when computers were very limited and problems were relatively simple, 

no extensive methodology was necessary. Good programmers could "hack" a 

solution, working at the problem in an unstructured way until they solved it. But as 

programs grew, this approach broke down. It became impossible to predict when a 

program would be ready for use, whether or not it would work properly, and, if it 

did work, whether or not it would be what the customer actually needed.

There grew up in response a move to discipline the software development process, 

to make it more like other kinds of engineering in being based on sound, 

established principles and "industry-standard" processes. Hence the term "software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

engineering." Whether because of the youth of the industry, or because of the 

special nature of software, industry-standard processes, with resultant 

standardization and predictability, have decidedly not emerged. The whole field of 

software development methodology remains in ferment, with new methodologies 

growing up amid high hopes, and then fading in disappointment. There is a 

coevolution of software development tools to support the various methodologies, 

which we consider below; and because the technologies, needs, and tools of the 

industry are changing so rapidly, there is little stability or accepted wisdom. 

Software development is difficult. As Fred Brooks wrote in the title of a celebrated 

essay on the subject, there is "No Silver Bullet" with which to slay the problems and 

make software development easy. (1987)

Nevertheless, attempts must be made, and they show some success. Traditional 

methodologies generally consist of some variant of the "waterfall model," in which 

development cascades from users' requirements to analysis to design to coding, to 

testing, to debugging, to delivery. Such methodologies are a reaction from the 

unstructured, experimental approach of the early days. Often they are associated 

with special tools called CASE tools (see below), CASE standing for computer 

assisted software engineering. These approaches are sometimes known as CASE 

methodologies. In an attempt to bring the rigor of engineering to software 

development, these methodologies aim to make clear at the outset exactly what the 

user wants; this is the requirements stage. There follows an analysis of the problem 

domain and the physical environment (e.g. computer types and network needs) in 

which the software w ill run. Then there is a high level design of the system. The 

analysis and design are frequently captured in complicated drawings of data flows 

and entity relationships. Next the coding is done; frequently this is a matter of
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translating the elaborate design drawings into code. Then the code is tested and 

debugged and finally, one hopes, delivered to a satisfied customer.

As we w ill see, these traditional methodologies have fallen short of what was 

promised for them, often because they assume that requirements can be clearly 

established at the outset of the development process. Because the knowledge 

which must be built into software is dispersed and tacit, it is rare to get a clear, 

complete statement of requirements, especially in recent years. In the early days of 

electronic computation, computers were used mostly to automate well-known, 

established processes. Hence the task of the software was reasonably clear. But as 

programmers became more sophisticated, and as people gained experience in using 

computers, they began to try to take advantage of computers in new ways, not just 

doing the same old thing faster and cheaper, but doing something new, different, 

and better. Requirements for such systems cannot be stated clearly at the outset, 

because people do not know yet what they want. Only as they gain experience 

with a developing design do they discover what they want and become able to 

define the requirements.

Many methodologies, and many more software projects, have foundered on this fact 

that requirements cannot be fully known at the outset. With painful regularity, 

traditional methodologies have produced, at the cost of hundreds of thousands of 

dollars and many man-years of effort, fully functional, complete systems which are 

unusable because they do not do what the customer wants them to do.

Another difficulty with traditional methodologies is the loss of meaning and 

understanding that frequently occurs in the translation from analysis to design and 

from design to implementation. Often three different representations are involved:
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different kinds of drawings for analysis and design, and code for the 

implementation. The challenge of maintaining consistency and understandability 

between them is called "bridging the semantic gap"; frequently the gap is not 

successfully bridged.

Still another problem with traditional methodologies is that in focusing on getting 

the product completed correctly, they have failed to take adequate account of the 

inevitability of maintenance.25 There appears to have been, in earlier days, a naive, 

unexamined belief on the part of many that a software system could be finished, 

made right, fully suited to the users' purposes. Once this was done, it was thought, 

the job was finished. Graduajly software developers have become aware that no 

system is ever finished, unless it is no longer being used. Many have found, to their 

dismay, that up to 80% of their software development costs come in fixing and 

adapting their product after delivery. Developers are always aiming at a moving 

target, because users1 purposes and the computational environment are always 

changing. (A fundamental element of this change, which still seems to be poorly 

understood, is that in using the system, people learn better what can be done and 

what they would like; ipso facto their purposes change.) Change is inherent in the 

software world (as it is in the rest of the world, of course.)

New methodologies are being developed which come to grips with the lack of clear 

requirements, the tacit, dispersed nature of knowledge, the importance of semantic 

consistency among analyis, design, and implementation, and the inevitability of

25 Again, software maintenance, as the term is generally used, is not a matter of 
preventing physical deterioration, but of fixing bugs as they appear, and maintaining 
complementarity with the surrounding environment.
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maintenance. Some of these take advantage of object-oriented technologiesf which 

we introduce below. These approaches generally involve some form of prototyping 

in the early stages. Prototypes are used as a vehicle through with the designers and 

users of the new software can come to understand their respective capabilities and 

needs, thereby establishing system requirements. Because object-oriented 

programming environments are flexible and pre-supplied with components that can 

be tailored to new purposes, they enable rapid prototyping, in which a prototype 

can be quickly evolved through several iterations in a kind of dialogue between 

designers and users.

Object-oriented technologies are also designed to bridge the semantic gap by 

allowing the entire development process, from analysis through coding, to use the 

same terminology. Those who w ill use the system as well as the designers and the 

programmers who do the nitty-gritty implementation may think about the problem 

being addressed in terms of the elements of the system and their interactions: these 

are represented in the evolving software as objects and their methods. Instead of 

having to translate from design diagrams in one notation to code in another, object- 

oriented programmers doing detailed implementation fill in the details of the 

interactions of the objects developed in analysis and design. A related advantage of 

using the same kind of notation throughout is that analysis, design, and 

implementation can all be occurring simultaneously (as is often necessary as 

requirements evolve).

Proponents of object-oriented techniques claim that they also improve the 

maintainability of software systems, because their modular structure is 

understandable, and allows changes to be localized. Object-oriented systems
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generally avoid the problems of "spaghetti code" in which one small change made 

here necessitates corresponding changes all over the system.

4.3. Tools

It is difficult to discuss methodologies without considering development tools at the 

same time, because the two are highly complementary, and often designed to be so. 

Of course there has been extensive evolution of programmers tools, aimed at 

helping with virtually all the aspects of software development. Among these are of 

course programming languages, which we have mentioned. Also there is an 

increasing number of programming environments, which provide a suite of tools in 

addition to the language proper. Some of these tools include

• Debuggers -  these help programmers find and fix mistakes on the screen. (In 

the early days, one had to get a printout of the program and look through the 

code by hand to find the error.)

• Compilers -  these translate the more abstract code written in higher-level 

languages into machine code (binary or executable code) that the computer can 

run. Good compilers are remarkable in their ability to make tradeoffs leading to 

efficient use of machine resources.

• Diagramming tools -  these are an important kind of CASE tool. They automate 

the process of drawing the extensive diagrams often used in traditional analysis 

and design. While they are not much faster than drawing by hand initially, they 

have the advantage of speeding up (the inevitable) changes considerably.
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• Code generators -  these translate from a higher level specification of some kind, 

for example certain highly structured kinds of design diagrams or screen layouts, 

to code. They are especially useful for creating the code necessary for creating 

user interfaces and reports. More capable and accurate code generators is one 

of the most sought after, and elusive, goals of CASE.

• Version control tools -  these have been developed in response to the challenge 

of coordinating the work of large teams of programmers. They keep track of the 

different versions of different modules, facilitating team development, and 

helping integrate changes. For example, if module A is used by modules B and 

C, but then module A must be changed for some reason, a good version control 

tool w ill alert programmers to the dependencies so that they can adjust B and C, 

if necessary, to restore compatibility.

• Browsers -  these are relevant primarily to object-oriented languages, which 

make use of structured hierarchies of abstract data structures called classes.

Class hierarchy browsers allow programmers to look through the hierarchy 

easily, browsing for classes that may be useful to them. In general, browsers 

allow programmers to examine different aspects of programs and systems from a 

variety of different viewpoints. These different viewpoints give them a better 

grasp of different aspects of the complex systems they are building.

4.4. "Automatic Programming” and augmentation of human creativity

To what extent can the process of software development be automated? Computers 

can do so much, can they produce software? How necessary are people to the 

software production process? These questions concern the potential of automatic
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programming and the more general subject of automated support for software 

engineering. Some have held that software production can be automated, and point 

to developments which they claim to prove their case. There is a fair amount of 

attention given today to automatic code generators, which automatically produce 

executable code from diagrams or other visual representations of program concepts. 

Some CASE tool builders provide this kind of capability, at least in limited fashion.

Another school of thought holds that automatic programming is a chimera, that only 

people write programs, and that the idea of automatic programming is 

fundamentally mistaken. There is a great deal that computers cannot do in 

producing software; they can do none of the interesting, hard problems.

These positions, though ostensibly in conflict, are reconcilable when couched in a 

different way. As we w ill see in the next chapter, the meaning of automatic 

programming has evolved in a revealing way. For now it suffices to say that while 

some kinds of activities can be automated, others appear to be impossible to 

automate. But unquestionably computer tools can help people in their tasks, by 

augmenting human capabilities. (Englebart 1963)

The dispute about the potential for automatic programming, and its de facto 

resolution in the nature of the new tools and processes being developed, point up 

an important aspect of the evolution of programming practice. That is, software 

engineers are gradually discovering and accepting that software development is an 

on-going process and must be treated as such. In general terms familiar to 

economists, the capital structure is not static; therefore capital goods, to maintain 

their value -  their position of usefulness in the evolving capital structure -  must 

evolve. Because the software industry has learned that change is inevitable, both in
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the initial development period and after products are put to use, many of the most 

useful languages, tools and methodologies now being developed are those that help 

software developers manage change. Of these, perhaps the most important are the 

object-oriented technologies. We finish this chapter with a short introduction of 

these.

5. Object-Oriented Technologies

Object-oriented programming systems (generally known by the disarming acronym 

OOPS) have their origins in the programming language Simula, which was designed 

to enable the construction of computer simulations. The units of interest in Simula 

are the objects in the system being simulated. What made Simula different from 

previous languages is that the modules from which its programs were built were 

composed not of functional units only, like traditional subroutines, but 

combinations of functions and related data. From this idea, object-oriented 

technologies were borne.

An object, then, is a bundle of data and related functionality. The concept is natural 

one, applicable to modeling natural systems. Consider an airplane, for example. 

This is an object defined by certain data, including its cruising speed, carrying 

capacity, age, location, etc. as well as by the functions that it can carry out, such as 

taking off, cruising, landing, and taxiing. In the pure object-oriented systems such 

as Smalltalk and Eiffel,26 everything in the system is an object; the approach is

26 There are also hybrid systems such as the popular C+ +, which has some of the 
features of object-orientation and lacks others. Most of this discussion pertains to
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consistently applied. Let us consider some of the key concepts of object-oriented 

programming.

5.1. Encapsulation

One of the most important characteristics of object-oriented programming systems is 

that they achieve a higher degree of modularity than previous styles of 

programming.27 This is because of what is known as the encapsulation of data and 

function. Recall that in older languages, while a certain degree of modularity is 

possible through the use of subroutines, there is still a significant chance for 

interference between modules because these modules generally share a common 

pool of data. The result is programming's version of the tragedy of the commons: 

one module often changes the data or its format is such a way as to confuse or make 

meaningless another module's use of that same data.

In object-oriented languages, by contrast, each object's data is encapsulated along 

with its own methods, and care is taken not to allow other objects to interfere with 

that data. Consider a possible software object airplane perhaps representing a real 

airpland in a navigation system. Its data might include airspeed, and heading; its 

methods might include accelerate, decelerate, tu rn jigh t, and turn-left. In a 

properly encapsulated object-oriented system, only the airplane object itself has

the pure object-oriented languages, and especially Smalltalk, with which I am most 
familiar.

27 At least they can achieve it. It is perfectly possible to write spaghetti code in an 
object-oriented language, just as it is possible to write elegantly modular code in a 
traditional language. It is simply harder in each case.
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access to its airspeed and heading data, and they can be changed only by the 

airplane’s invoking one of its methods. It is not possible for some other object in 

the system to change that data, by accident or error, as would be the case, say, if the 

airspeed and locations of all the airplanes in the system were stored in a common, 

generally accessible table.

Object-oriented languages thus provide programming some of the benefits that 

property rights provide economies. Indeed, Mark Miller and Eric Drexler hold that 

the development of object-oriented programming constitutes an independent 

rediscovery by programmers of the virtues of property rights.28 Just as property 

rights secure to economic agents a sphere of autonomy, and a confidence that the 

possessions for which they make plans will not be interfered with arbitrarily from 

the outside, encapsulation provides software objects an autonomy and security that 

the data they depend on w ill not be interfered with. The upshot is similar in both 

settings: just as property rights foster coordination in the economy*, encapsulation 

fosters coordination in software systems.

JL2* M ess.age.£assiog

In object-oriented programming, this encapsulation is supported by a means of 

inter-module communication called message passing. Objects do not directly 

change other objects; they "send them messages" to one another requesting 

services. Each method (be alert here to distinguish the distinct, but closely related 

concepts of method and message) that an object "knows how" to carry out can be

28 See Miller and Drexler (1988) for a provocative discussion of this idea.
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triggered by that object's receiving a corresponding message. If the object 

"understands" the message -  that is, if it has a corresponding method in its 

repertoire of functionality -  it performs that method. (If not, it triggers an error 

message in the system and the programmer gets to do some debugging.) In no 

other way can one object in a system interact with another. Again, this expedient 

serves an important security function: one part of a program simply cannot interfere 

with data encapsulated in another. It has no means for doing so. All it can do is 

send an appropriate message asking for, say, some part of that data or that an 

operation be performed on it.

iUL Polymorphism

One of object-oriented technology's most powerful means of helping programmers 

manage complexity is polymorphism. This is a daunting name for an entirely 

familiar concept from everyday life. Polymorphism is the assignment of the same 

name to different but related actions (methods, in Smalltalk terminology.) If, for 

example, I were to ask you to shut the window, and then ask you to shut the door, 

you would not be confused. You would interpret "shut" in two different, though 

related ways appropriate to the two different contexts. Windows are shut with a 

different set of actions that doors are shut. In like manner, object-oriented 

programming languages interpret the same method name in different manners 

appropriate to the context, that is, appropriate to what kind of object is involved. 

That is polymorphism.

As simple as it sounds, it has been tremendously empowering to programmers. No 

longer do they need to compose different names for each slightly different action in 

slightly different context. They use the same appropriate term in all contexts, but
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implement the methods appropriately differently for each kind of object. With 

polymorphism, programmers can address the great complexity of dealing with many 

slightly different kinds of objects by the simplifying power of abstraction, as we do 

in everyday life with our various different meanings for "shut" (shut off the TV; shut 

the book; shut up). Polymorphism lets us avoid addressing complexity with 

complicatedness, as in programming languages which would require a different 

kind of "shut" for each context (e.g. shut_window, shut_door, shut_tv, 

shutjnouth...).

5.4. Information Hiding

Polymorphism and message passing make possible information hiding, another 

important characteristic of object-oriented technology that serves to simplify the 

programmer's job. Information hiding has not to do with secrecy, as it might sound, 

but with fostering the division of knowledge by making it unnecessary for 

programmers or objects to have much information about the other objects with 

which they interact. They key point is that all a programmer or object needs to 

know about another object is what useful services it can provide, and what 

messages it must be sent to trigger those services. It is not necessary to know 

anything about how the object actually does what it does.

The analog to everyday life is strong. When we deal with an accountant, for 

example, we might ask her (send her the message) to figure out our tax liability on a 

certain transaction. All we need to know is what message to send her to get her to 

perform the desired service. We do not know, nor do we want to know, exactly 

how she does it. That would defeat the whole purpose of the division of labor. It
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would distract us with unnecessary knowledge, and might lead us to give the 

accountant unwanted advice as to how to do her job.

There is another benefit. That is the interchangeability of implementation. When a 

programmer works out an improved method for some kind of object, he can simply 

pull out the old implementation and put in the new. As long as the message that 

triggers it remains the same, no one else need know, and no other kinds of objects 

need be changed; changes in one module necessitate corresponding changes in 

other modules far less frequently in object-oriented programming than in 

conventional programming. Hence information hiding is an important enabler of 

software evolvability.

5.5. Classes and inheritance

In object-oriented programming, every particular object in any actual program or 

system is an object of a particular kind or class. As such, it is called an instance of 

that class. Classes themselves are an important kind of abstraction, called abstract 

data type. There can be thousands of instances of a certain class, or none. Class is 

the abstraction, the kind of object. Here is another valuable abstraction 

mechanism. With the help of classes, which abstract from the particular 

characteristics of particular objects to comprehend what those kinds of objects all 

share, programmers have another means of getting a grip on complexity.

Furthermore, these classes are organized in inheritance hierarchies, which help 

make clear what kinds of things they are, and allow the sharing of characteristics. 

David Taylor explains classes and inheritance as follows:
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Inheritance is a mechanism whereby one class of objects can be defined 
as a special case of a more general class, automatically including the 
methods ... of the general class. Special cases of a class are known as 
subclasses of that class; the more general class, in turn, is known as the 
superclass of its special cases. In addition to the methods... they inherit, 
subclasses may define their own methods and ... may override any of the 
inherited characteristics. (1990, p. 22)

For example, we might have the general class of objects vehicle, with subclass 

fourWheeledVehide, which in turn has subclasses car and truck. Classes car and 

truck would inherit all the methods of fourWheeledVehide and vehicle, but each 

could specialize any of these methods as appropriate, and add additional methods 

as needed.

In David Taylor's words,

The invention of the class hierarchy is the true genius of object-oriented 
technology. Human knowledge is structured in just this manner, relying 
on generic concepts and their refinement into increasingly specialized 
cases. Object-oriented technology uses the same conceptual 
mechanisms we employ in everyday life to build complex yet 
understandable software systems. (1990, p. 24)

6. Summary

Dramatic improvements in computer hardware have relaxed the resource 

constraints that shaped programming practice in the early days. Relatively freed 

from resource constraints and increasingly ambitious in undertaking large, complex 

problems, software developers found themselves confronting a daunting complexity 

constraint -  how to manage the complexity of the systems they were trying to build. 

In response to this challenge, a variety of tools and development methodologies 

have evolved to enable better abstraction capability, more modularity of system
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design, and better conceptual grasp of the evolving systems. The recent 

development of object-oriented technology has provided substantial advances in 

programmers ability to manage complexity with effective modularity and 

abstraction.
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Chapter 3

Designing new capital: lessons from software development

Oh, I see the crescent promise o f my spirit hath not set.
Ancient founts o f inspiration well through all m y fancy yet.

-  Tennyson, "Locksley Hall"

In speaking with each other we constantly pass over into the 
thought world o f the other person; we engage him, and he engages 
us. So we adapt ourselves to each other in a preliminary way until 
the game o f giving and taking -  the real dialogue -  begins.

- Hans-Georg Gadamer29

1. Introduction

In this chapter we look at the process of new software development, its problems, 

practices, and historical developments, to see what it may teach us about the nature 

of new capital development.30 We will see new software development to be a 

social learning process, and identify important aspects of that process. In an effort 

to get a good grasp on the software development process as a whole, we w ill take

29 (1975, p. 57)

30 We need to keep in mind that virtually all capital goods are used jointly. Hence 
we w ill try to think about individual capital goods in terms of the contexts in which 
they are used, and think of software applications as systems of sub-programs that 
interact extensively with one another. Most software constitutes not so much a 
single tool as a system of tools (consider a word-processor, for example: it has many 
modules including its text editor, printer drivers, spelling checker, search and 
replace facilities, etc.).

78
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two different perspectives on it. We focus first on its social aspect -  its necessarily 

interpersonal nature -  through an examination of evolving software development 

practice. Then we focus on its being a learning process -  one in which knowledge 

grows, becomes coherent and embodied in a usable form -  through examining the 

evolving high-order goods used in the process -  the tools software engineers have 

developed to help them in their work. In the next chapter we w ill go on to consider 

the challenge of software maintenance, focusing on software development's being 

an on-going, never-completed process that occurs through time. Inevitably we w ill 

cover some of the same ground more than once from different angles. I hold this to 

be a strength of the method rather than a drawback, however, because the software 

development process, like a software system itself, is a complex system beyond our 

complete understanding, but which we can understand better and better by taking a 

variety of different views into it.

2. Discovery in the design process: why prototyping

Software development, like all capital goods development, is a social, not a solitary 

process. Many people are involved, because many people must contribute their 

own special knowledge to the evolving system. The nature of this social 

interaction, through which many people's different knowledge is brought together 

and embodied in new capital goods, is not straightforward. In particular, it is not a 

matter of saying to each, "Tell me what you know that's relevant," and 

incorporating that in a straightforward translation of some kind. Frequently we do 

not know what knowledge is relevant, nor could we express it clearly if we did.
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And yet much traditional software methodology has proceeded on the assumption 

that we do and can.

An alternative approach which is growing up and gaining acceptance is the use of 

various techniques aiming to discover what knowledge is relevant -  what needs and 

opportunities this tool may address -  and to express that in usable form: embodied 

in the evolving design of the new system. Important among these techniques is 

prototyping. The prototyping process constitutes a kind of dialogue in which all the 

various people participate whose knowledge must be embodied in the new 

capital.31 The medium for the dialogue is the prototype itself -  the emerging 

design. In a useful sense it is the prototype, the new design, that learns, rather than 

the human participants, because it is in the prototype alone that all the relevant 

knowledge may be found in useful form.

2.1. Divided knowledge in software development

Mark Mullin begins his 1990 book, Rapid Prototyping for Object-Oriented Systems 

with this loose definition of rapid prototyping:

This book deals with the concept of rapid prototyping, a process where 
specifications for a piece of software are developed by interaction 
between a software developer, a client, and a prototype program. Rapid 
prototyping is used when a client cannot initially define the

31 Joint application design (JAD) and rapid application development (RAD) are 
related approaches. Joint application design stresses bringing together all the 
people who should make a contribution to the design; Rapid application 
development involves a combination of joint application design sessions, CASE 
tools, and prototyping. For our purposes, what is crucial to all these is the 
interactive learning at which they aim.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

requirements for a piece of software to a degree necessary to satisfy 
more traditional design methodologies, such as those defined by Edward 
Yourdon and Michael Jackson, (p. xi)

There is a sharp distinction between the prototyping approach and traditional 

methodologies in respect to the assumptions made about knowledge in the software 

development process -  who knows what, when, and in what manner. Traditional 

methodologies implicitly view the relevant knowledge as articulable and static.

M.F. Smith points to three assumptions these methodologies share:

The first assumption is that all the requirements and needs of 
applications can be analysed and understood adequately by the users 
and software developers before development begins.... There is also an 
assumption ... that software needs and requirements w ill be stable....
Finally, there is an assumption ... that users understand fully the 
technical documentation presented to them. (1991, p. 4)

The prototyping approach, by contrast, recognizes that the necessary knowledge is 

far more elusive, changing, and difficult to communicate. Perhaps most 

importantly, the clients, for whom the software tool is being designed, do not know 

what they want, or at least they are unable to say what that is. Much of the users' 

knowledge, like much knowledge in general, is tacit, inarticulate. (Polanyi 1964) 

Accordingly the most fundamental kind of knowledge necessary to the tool-building 

process -  what the tool is to do -  is not readily accessible at the outset. As Mullin 

puts it,

Unfortunately, clients rarely have this complete a grasp on their 
problem; they usually assume their responsibilities are simpler, namely, 
they:
• Recognize that a problem exists
• Find an expert to solve the problem (1990, p. xi)
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Just what the problem is, nobody is clear about. But if the clients cannot say what 

sort of tool they want built, how are the tool builders to find out? Prototyping 

provides a means.

Prototyping is an iterative process that accommodates adjustment and change; it 

anticipates instability of requirements:

Requirements and software actually evolve together throughout the 
lifecycle of the project.... In the iterative approach to software 
development, users "stay in the loop," refining their requirements as they 
better understand what application features are possible... (Adams 
1992b, p. 7)

The prototype itself serves as a valuable communication medium through which 

designers and users can reach reasonable confidence that they really understand 

one another. Because the process is iterative, it allows for more frequent, regular 

interaction. Because the prototype is a version of the evolving tool, the dialogue 

has a clear, mutually understandable focus. Instead of having to make sense of a 

lengthy requirements document and figure out if that written description really 

captures what they want (or think they want), users can interact directly with the 

prototype and experience whether or not it meets or fails to meet their needs.

It is perhaps understandable that traditional methodologies should assume well- 

understood, fixed requirements: the computer field is very young, and many early 

programs were essentially electronic replications of existing manual systems such as. 

inventory management and accounts payable. In these kinds of cases, the 

knowledge of what the tool must do is mostly available. The users know pretty well 

what they want and express it reasonably clearly. The software designers have the 

added help of being able to look at what is being done on paper. In such
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circumstances, it was not so necessary for developers and users to carry on a 

dialogue through which they could come to understand one another.

But the old methodologies are severely strained under present conditions. Today,

Software developers are no longer confronting situations where they are 
reproducing manual systems. Now they are expected to replace a chunk 
of the client's middle management with an expert system, one that uses 
all of the system's existing data to decide such things as when to reorder, 
how much to reorder, what bills to pay, and what customers are good 
credit risks.

...[The designer may sometimes] be lucky enough to get a clear 
definition of the problem and be able to see an immediate solution. ...
More often, a client w ill say something like, "Gee, this system has 
completely changed the way we do business. And now we have all of 
these great ideas about how we can get the system to do even more for 
us." Unfortunately they can't give you a lot of detail about these new 
ideas. After all, that's why they hired you. (Mullin 1990, pp. 2-3)

A new software system's requirements cannot be fully known, and hence the 

software's capabilities cannot be fully specified, at the project's inception. In this 

lies the problem with traditional methodologies based on the classical "waterfall" 

model, in which design begins after the software requirements are (supposedly) 

fully specified and analyzed.

mhe conventional 'waterfall' methodology practiced in most large 
companies today ... requires the creation and approval of numerous 
detailed documents before the first procedure is ever written ... [and] 
doesn't allow any modifications once the actual programming has 
begun. This constraint frustrates [client] managers to no end because 
they rarely know what they really want until they see it running on a 
screen, at which point it's too late to make any changes! (Taylor 1990, p.
97)

The difficulty of this approach is illustrated in the experience of one developer 

working on a project that was to provide "the usual project deliverables of
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requirements specification, functional specification and design specification which 

cover the specification phase of a development project." They found that

[t]he functional specification standard ... was too inflexible for the needs 
of the GUI [the graphical user interface they were building]. Other 
techniques such as formal specification were inappropriate considering 
the time constraints.

Thus a more pragmatic approach was accepted -  that of prototyping.
(Barn 1992, p. 25.)

The point of rapid prototyping is to establish the requirements, to find out what the 

tool must do. "Your job as a rapid prototyper" says Mullin, "is to work with the 

client to extract specifications for their new software." Early in the process, your 

focus "is simply on defining why this software is being written in the first place, 

which w ill tell you what is expected of it." (1990, pp. 214-215)

Among certain members of the mainstream CASE community, the significant and 

on-going challenge of establishing what software systems are to do is now being 

recognized. In "A Self-Assessment by the Software Engineering Community," 

summarizing the findings of the International Workshop on Computer-Aided 

Software Engineering, Gene Forte and Ronald Norman write that "Prevention [of 

defects] begins with better ways to capture, represent, and validate the objectives 

and requirements of systems we are trying to build..." "There is still much work to 

be done in defining generic [software development] processes..," they say. "Areas 

that are particularly weak in process definition [include] requirements elicitation..." 

(1992, p. 29)

Requirements elicitation is a basic purpose of rapid prototyping, which takes a 

wholly different approach to software development from that of traditional
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methodologies. Simply put, rapid prototyping works as follows: After an initial 

meeting between client and developer, the developer produces a very simple 

prototype which the client can try out on the computer. Then follows a repeated 

sequence of the following steps:

• the clients try out the current version of the prototype and react to it. They 

explain as well as they can what they like and don't like. Equally important, the 

developers observe what they do and don't do, what they try, what they ignore, 

where they are frustrated, and where they are pleased.

• informed with this new knowledge, the developer improves and extends the 

prototype, and offers this new version to the client for trial.

The cycle continues in a kind of dialogue -  a conversation in which the prototype 

itself is passed back and forth, as much as any words about it -  until the prototype 

has been refined to where it contains the functionality the client needs. At that 

point the initial version of the software to be delivered is defined, and the 

developers' emphasis turns to details of implementation.

We emphasize that this transition is a change in emphasis, rather than a switch from 

one set of activities to a distinctly different set. Analysis, design, and 

implementation are all really occurring together throughout the software 

development process. But developers need to avoid naive prototyping. If an actual 

product is actually to be shipped on a reasonable budget, developers must avoid 

what is known as the "creeping feature" problem, in which more and more 

functionality is always being planned in, so that the product is never finished. On 

the other extreme, developers must resist the temptation to ship the prototype.
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Sometimes clients are so please with a prototype, that they say, "We'll take it," 

before important issues of robustness and efficient implementation are addressed.

Sometimes the product to be delivered is implemented in a language different from 

the prototyping language. In such cases there is more of a difference between 

prototyping and implementation than in cases where the delivered product is a fully 

worked out descendant of the last prototype. Even in these latter cases, however, in 

which there can be an almost seamless transition from prototype to implementation, 

it is important for the developers to distinguish clearly between the different goals of 

prototyping and implementation. Otherwise they can fall prey to feature creep, 

slipped deadlines, and broken budgets.

The growth of prototyping in software development is a tacit recognition in the 

software industry that knowledge is more tacit and more dispersed than has 

previously been recognized. The shift from the traditional, "waterfall" type 

methodologies to methodologies that depend on prototyping seems to represent a 

shift in view of software development. It is coming to be seen less and less as a 

matter of manipulating static knowledge and more and more a matter of dynamic 

learning.

Capital development appears to be fundamentally a matter of dynamic learning. 

Because the knowledge that must be embodied in new capital goods is constantly 

being developed, widely dispersed, incomplete, and frequently tacit, a learning 

process which elicits and brings together this knowledge is essential. The point 

applies not just to software, but to capital goods in general. In manufacturing
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industries in particular, there has been recent work emphasizing the importance of 

the "prototype/test cycle" and effective team learning.32

2.2. Knowledge of function, knowledge of design, knowledge of implementation

At this point let us step back and look at the software development process from a 

broad perspective. There seem to be three general stages to the process, which 

correspond directly to the broad categories of knowledge about tools discussed in 

Chapter 1: knowledge of function, of design, and of implementation.:33

1. Establishing the requirements. What is the software to do? What is this tool 

supposed to be able to accomplish? This knowledge of function comes 

primarily from the tool user.

2. Design. What sort of tool may be fashioned so as to provide the desired 

functionality? What sort of design would best meet the users' requirements? 

This knowledge of design comes primarily from the designer, the specialist 

tool-maker.

3. Implementation. This is the actual instantiation of the design, the coding 

process. How, precisely, is this design realized? How may the details of

32 See in particular Womack et. al. (1990) and Wheelwright and Clark (1992). We 
will take up the application of these insights to physical capital goods in Chapter 6.

33 These cannot be sharply partitioned, either in time or in the nature of the 
development activity. "Final implementation," for instance, nearly always involves 
elements of design, as the programmer figures out the best way to implement a 
particular algorithm; and "design" encompasses many high-level implementation 
decisions.
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construction be arranged so as to achieve good performance in speed and 

efficient use of machine resources? This knowledge of implementation comes 

primarily from the skilled programmer.

Prototyping is a valuable part of software development because these kinds of 

knowledge are dispersed and latent. They reside in different individuals who may 

not know one another and may have trouble communicating. Furthermore, the 

individuals may not be consciously aware of their knowledge, which needs to be 

brought out in application to the problem at hand. The dialogical process of 

prototyping serves to trigger the re-discovery or creation of useful knowledge on the 

part of the participants. The users' reactions stimulate the design knowledge of the 

designer, and the functionality offered in successive versions of the prototype 

stimulates the users' knowledge of function, helping them become more clear as to 

what the tool needs to do. Furthermore, the prototype itself provides the medium in 

which these different kinds of knowledge may be captured.

Knowledge of implementation, finally, often resides in still others, the actual coders. 

Once the clients accept the prototype as offering what they need, the designer often 

turns over the implementation job to programmers who specialize in efficiency of 

implementation: they construct the design to run with the best possible balance of 

high speed and low memory use on the computers for which it is intended.34

34 As we shall see, the kinds of knowledge involved in design and in 
implementation are not independent, because designers must know what it is 
possible to implement, and implementors essentially design the details of their 
implementation. Nevertheless, these two types of knowledge are conceptually 
distinct and may not be concentrated in the same person.
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The nature of prototyping brings out not only that the necessary knowledge is 

dispersed, but also that it is frequently tacit. Prototyping advocates stress that 

clients cannot say what they want. Even when they seem to know at some level, 

often they cannot express it. The prototyper must discover this by showing them 

different capabilities and carefully attending to their responses. Much of the 

designers' knowledge is tacit as well. They cannot say precisely what makes good 

design, nor why they take some steps rather than others. Indeed, the various books 

on prototyping are attempts to make more explicit some of the tacit knowledge that 

software designers themselves have developed over the years.

In addition to being dispersed and tacit, the knowledge valuable to a software 

development project is generally incomplete. It accumulates continually over time. 

This is why prototyping must be iterative. Every time designers listen to feedback 

from their clients, their knowledge of the clients' wants increases, and every time 

the clients interact with a prototype, their knowledge of the software's potential 

increases. In this manner grows the knowledge necessary to building a software 

tool.

2.3. Software development as interactive learning

In short, the software development process exemplifies the classic Hayekian 

knowledge problem: the different kinds of knowledge to be coordinated are 

dispersed, tacit, incomplete. This being the case, the development of new software 

capital is a discovery procedure, an interactive learning process. Through this 

process, the dispersed knowledge is brought together in the new software tool. The 

knowledge gets built into, coalesces in, becomes embodied in, the software.
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Thus in an important sense, it is actually the tool itself -  the new software -  that 

"learns." The client never learns what the designer knows of modularity and 

information hiding; the designer never fully understands the client's management 

style, to which he is tailoring the system; the programmers never learn why the 

screens must look like this instead of like that. The only "place" in which all the 

relevant knowledge truly resides is the software itself.35

On this view, the development of new capital goods can be seen as a prime 

instance of the social cooperation of the market process. Just as the farmer, miller 

and baker cooperate in producing bread for others to consume, so the client, 

designer, and programmer cooperate in producing new software tools for the client 

(and others) to use in further production. The knowledge inputs of all are 

necessary, and the only "place" where they exist together is in the bread or the 

software. Anyone who eats the bread or uses the software thereby takes advantage 

of the knowledge contributions of all those who have participated in its production.

The learning process of software development is non-deterministic and 

evolutionary; it cannot be automated, and it defies capture in a formal 

methodology. Traditional approaches to software development seem to make the 

same kind of assumption that is made in many neo-classical economic models: that 

all the relevant knowledge is available, and that therefore what remains is 

mechanically to work out its consequences, optimizing within given constraints. In

35 For an intriguing explication of the complex interdependencies of our 
knowledge, and the degree to which we unknowingly draw on a tremendous 
amount of shared knowledge and understanding, in our routine activities, see Phil 
Salin's article on "The Wealth of Kitchens." (1990)
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this error we can see both why the traditional approaches to software engineering 

have led to cost overruns and frustrations for clients and developers, and why neo

classical economics is inadequate for illuminating the software development 

process. As Mullin says,

I have stressed that modern software development often has little 
resemblance to the formal development process taught in schools and 
industry accepted texts. Instead, it's much more of a hit-or-miss affair, 
with everyone stumbling around in the dark, hoping that they w ill trip 
over the correct solution to the problems confronting them. This arises 
primarily from the fact that software development is innately a human 
process, as opposed to the mechanistic process many claim it to be. If 
such an argument were true there wouldn't be much need for 
programmers, as our current technology is well suited for automating 
mechanical tasks. When the task requires creativity and insight, our 
technology is of little use. (1990, p. 136)

Mullin overstates here. It is not that our technology is of little use, but that we must 

use it differently when we are learning than when we are mechanically applying 

what we have learned.

Let us look more closely at the nature of this learning process as illustrated by rapid 

prototyping. Inevitably the process is interactive, because the relevant knowledge 

of function and design are dispersed and must be brought together.

Interaction between user and designer

In a discussion of a product they built for Hewlett-Packard, Bob Whitefield and Ken 

Auer of Knowledge Systems Corp. bring out the inescapable necessity of interaction 

between client and designer. The product is called the Hierarchical Process 

Modeling System (HPMS); it provides computer automation for Hierarchical Process 

Modeling (HPM), Hewlett-Packard's means of modeling its internal business and
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manufacturing processes. Whitefield and Auer explain that they rejected one 

development possibility because "the development time and costs were prohibitive 

considering the immature state of the HPM methodology. What was needed was a 

quick and inexpensive prototype to continue exploring what kind of tool HP really 

needed." (1991, p. 65, emphasis added) Because Hewlett-Packard was still 

developing HPM, clearly they were unable to define it fully for Knowledge Systems. 

The methodology and the computer tool which was to represent it were to co- 

evolve in an exploratory process of interaction between client and software 

designer.

As a specific illustration of this interaction, consider the following excerpt from 

Whitefield and Auer's description:

In addition to its graphical representation, each component also has a 
semantic counterpart. It is entirely possible to create and edit models 
using only textual browsers, but few users ever do so. In fact, users 
spend so much of their time using the construction diagram that they 
tend to think of the diagram itself as the model. As the key nature of the 
construction diagram became apparent, the following requirements were 
established for the final to o l:... (p. 67)

"Became apparent" is the revealing phrase here. The users of HPMS at Hewlett- 

Packard did not specify at the outset that for their purposes, a picture was worth a 

thousand words. The designers learned this through interaction with their clients. 

Without this interaction -  suppose, for instance, Hewlett-Packard and Knowledge 

Systems had tried to proceed by traditional "waterfall" methodology and begin with 

a document containing ail the software specifications -  the knowledge would 

probably not have emerged, or at least not without a great deal of frustration, 

misunderstanding, and delay.
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Interaction between user and tool

Note that there is another kind of interaction at work here: that between the client 

and the tool itself. The reason the HPMS users did not specify the importance of the 

diagrams is probably that they themselves did not realize it; after all, they had never 

used this kind of tool. The users discovered what they wanted and needed through 

interaction with the tool itself, as it evolved.

Whitefield and Auer are explicit about the discovery that occurred as the users 

interacted with the prototypes. They say, for example, "As the alpha version of 

HPMS began to be used, response time was determined to be a critical factor in 

user acceptance. A goal of less than two seconds to route and draw most diagrams 

was established for the final product..." Also, "HP often desired cosmetic changes 

to diagrams. As experience was gained with the tool, flaws in default placement 

and appearance were uncovered. This was expected, although the extent and types 

of changes were not." (p. 67, emphasis added) The users at HP needed to use the 

tool to realize their speed requirements and to identify the flaws in the defaults.

There would seem to be two aspects of this discovery process at work in the client 

users' interaction with the prototype. One has to do with the tacitness of 

knowledge. Much of the users' knowledge of their work is tacit, inarticulate -  they 

know what they do much better than they can describe it. Therefore one element 

of this discovery process consists of the user's discovering in the conscious, 

articulate part of his mind, the knowledge that was always there in some sense 

inarticulately, tacitly. In using the HPMS prototypes, for example, the users at HP 

bring their tacit knowledge to bear, and where the tool does not match smoothly 

with what they actually do, they detect problems. Of course they need not be able
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to explain these problems completely. Tacit knowledge made more explicit 

through interaction with the prototype need not be made fully articulate (that is not 

possible), but only clear enough so that it can be communicated to the designer for 

incorporation into the next version.

Another, more subtle aspect of this discovery process has to do with the 

incompleteness of knowledge. Above we examined the bringing to light of 

knowledge which already existed, but not in communicable form. In some sense 

the users of the prototype knew all along that they wanted and needed certain 

capabilities in the software, but they were unable to express these needs to the 

designers. Now, by contrast, we consider the discovery of capabilities that the users 

do not want or need at the outset, because those capabilities never occurred to 

them in any manner. Only in working with the prototype do they first conceive of 

these capabilities. Once they do conceive of them, however, they want them.

The working prototype provides a context in which previously unimagined 

possibilities can come to mind. One programmer and tester of new software says, 

"When I try out a new user interface, I find myself trying to do things with it. When 

it won't let me, I'm frustrated." The interface -  what the users see of the prototype - 

- suggests possibilities to the users. It provides them with a new way to look at what 

they do, and this look may generate new insights as to what they might do.

The tacitness and incompleteness of the user's knowledge of what they need are the 

main reasons for the failure of traditional methodologies in modern software 

development. Software requirements cannot be completely articulated in the first 

stages of development because the necessary knowledge is incomplete and because
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much of it is inarticulate. Only through interacting with the developing tool do 

users discover and communicate to the designers what they need.

Interaction between designer and tool

It is not only the users who interact with the tool, of course; the designers do also. 

This may seem so obvious as not to need mention: how could the designers ever 

produce their designs without interacting with them? The point to be stressed, 

however, concerns the nature of this interaction: the designers themselves are 

engaged in an evolutionary sub-process of generating the new knowledge which 

constitutes the evolving design. They are learning also. Ward Cunningham, a 

widely-respected programmer, designer, and methodologist, describes some of his 

design experience in these terms:

We'd get an idea, type it in, and say "Let's see what that does." Kent 
would ask me a question. I would say, "I don't know," but I'd just start 
typing and we'd let the machine tell us.36

Designers' knowledge of design principles and various problem-solving techniques 

is not all ready to hand, nor is it static and complete. They discover how to apply 

this knowledge to new problems in the process of applying it. They ponder, they 

sketch, they experiment, they try out various ways of decomposing the problem, 

they make some initial decisions, they repeat the process. They learn by doing. In 

Mullin's description, software design is fundamentally a matter of learning:

The best way to do OO program design is to realize that you are dealing 
with systems, and the best source of information is the system you are

36 Personal interview conducted October 1992. "Kent" is Kent Beck, another pre
eminent Smalltalk programmer.
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duplicating or enhancing. Your job is not to dictate how the system w ill 
work, but to understand how the system already works. As you do this, 
you are acquiring valuable information about the classes you w ill need 
to construct your system and how instances of these classes interact with 
each other at runtime, (p. 36)

A good illustration of the manner in which the designer learns through working with 

the design comes in Mullin's description of the initial laying out of the views 

(screens) that the user w ill see:

The actual act of laying out the view provides you with another set of 
information you w ill need in constructing the prototype. By deciding on 
the visual grouping of information in the view, you w ill also be 
determining any data assembly, or aggregation, capabilities that the view 
needs.

By laying out a view, you learn something; by deciding on grouping, you determine 

needed capabilities. In brief, by interacting with the evolving design, the designer 

learns more about what it should be.

A creative process such as software design is not deterministic, with output dictated 

by input through some sort of black-box optimization. This would require the 

designer to grasp the problem in its entirety at a glance, and on that basis to grasp 

its "correct" solution. On the contrary, software design is an evolutionary process in 

which the designer "makes sense" of the problem over time, and gradually puts the 

design together. In this respect software design would seem to be akin to writing. 

Composition is not a matter of copying out a book that has somehow popped into 

the writer's head. Rather the writer works gradually from a vague idea to a fully- 

conceived book, through a process of fleshing out, defining and refining, finding out 

what "works" by trial and error. Similarly the software designer uses feedback from
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the design itself, seeing what works, what has promise, what relationships are 

revealed that were unclear before.

Iteration: the design dialogue

We have discussed interaction between client and designer, and interaction 

between both of these and the prototype itself. These two kinds of interaction are 

closely related in practice, even the same in a sense, because it is largely by means 

of their interaction with the prototype that the two groups interact with each other. 

The prototype is a communication medium. Those involved communicate with one 

another largely in their responses to the prototype, with these responses closely 

observed by the other side. In a sense, there is a dialogue going on in which the 

prototype is passed back and forth. The designers say, "Give this a try," and watch. 

The users try it out, experiment, exclaim about some features, pout about others, 

ask questions, and describe frustrations. "Well, this part is good,” they say, "but that 

part needs to be more like so. Set up as it is, I can't do such and such." The 

designers, in turn, think, "So that's what they want! (Why didn't they say so in the 

first place?) Well, I can give them something twice as good as what they're asking 

for. Wait until they see this..." In the next iteration, the user may respond, "No, no! 

That's not what I need! But it's marvelous! You can do that?! Well then do it this 

way...!"

This fanciful example illustrates another important characteristic of the learning 

process that is software development: it is iterative. Both sides in the dialogue are 

learning from one another. On the basis of what they learn in each round of the 

exchange, they change what they feed back to the other side, thereby calling forth 

new learning there. The process is gradual because learning takes time. The new
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software develops throughout this ongoing exchange, as more and more of the 

necessary and appropriate knowledge gets built into it, and extraneous, unnecessary 

knowledge is discarded. Here is Mullin, again:

In RP design, we stop designing on a regular basis in order to run the 
prototype by the clients and users, thereby getting information on 
adjusting our design before it's too late to do anything about the parts 
they hate, or the things they really wish it had. So, for all my arguments 
about seamless development environments, it appears that our design 
actually progresses by fits and starts, as opposed to the seamless path of 
traditional design evolution.

As it happens, this observation is wrong. These sessions with the client 
are not "seams" in the RP design process, they are natural components of 
it. They provide us with the means to continually adjust our design 
course and goals as we learn more about what the client desires by 
letting them interact with our best idea of what it is that they do desire.
As they do this, they will provide us with the necessary information to 
extend the design another level. Recall that I observed at the outset of 
this book that it wasn't realistic to expect to get a clear list of 
requirements from a client when you commence a design project. We 
are designing to the requirements we have and then using that design to 
dig up more requirement information. (1990, pp. 86-7)

3. Designing as understanding: the role of tools for thought

We concentrated in the previous section on the social, interpersonal aspects of 

software development. In this section we concentrate on the learning aspects. We 

do this through an examination of the higher-order tools software designers use to 

help them do their work of creating still other software tools. The fundamental 

challenge in software development is to make sense of the complexity of the 

systems we are trying to build: to understand them and the way they function, and 

to express that understanding in code. Most of the tools software designers use,
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higher-level programming languages in particular, are tools for helping them 

understand what they are doing.

An important and illuminating exception to this rule is automatic code generators, 

both those that generate higher-level code from diagrams, and compilers, which 

translate higher-level code into machine language. Paradoxically, although these 

tools in a sense produce software automatically, without any human participation, a 

look at their evolution, what they do, and what they do not do, reinforces the 

fundamental point that software development is a wholly human learning process.

i L  CASE tools

Let us start with a quick look at CASE tools proper. The mindset of mainstream 

CASE methodology is illustrated in the following passage from CASE is Software 

Automation (1989), by Carma McClure, an expert on computer-aided software 

engineering. Having defined CASE as "the automation of software development," 

McClure expands as follows:

CASE proposes a new approach to the software life cycle concept, that is 
based on automation. The basic idea behind CASE is to provide a set of 
well-integrated, labor-saving tools linking and automating all phases of 
the software life cvcle....

Traditional software technologies are of two types: tools and 
methodologies.... Most software tools are stand-alone, mainframe- 
based, and concentrate on the implementation part of the software life 
cycle-

The software methodology category includes manual software 
development methodologies such as structured analysis, structured 
design, and structured programming. These methodologies define a 
step-by-step disciplined process for developing software.
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The CASE technology is a combination of software tools and 
methodologies. Furthermore, CASE is different from earlier software 
technologies because it focuses on the entire software productivity 
problem, not just on implementation solutions. Spanning all phases of 
the software life cycle, CASE is the most complete software technology 
yet. CASE attack software productivity problems at both ends of the life 
cycle by automating many analysis and design tasks, as well as program 
implementation and maintenance tasks.

Because manual structured methodologies are too tedious and labor 
intensive, in practice they are seldom followed to the most detailed 
level. CASE makes manual structured methodologies practical to use by 
automating the drawing of structured diagrams and the generation of 
system documentation. (1989, pp. 5-6, emphasis added)

There are a number of points here worthy of note. One is the acceptance of the 

idea of the traditional "software life cycle," which begins with analysis of the 

problem domain, and proceeds sequentially in a "a step-by-step disciplined 

process" through design and implementation stages. There are two important 

hidden assumptions here. The first is that the problem is known and awaits our 

analysis. The second is that implementation -  actually writing code to solve the 

problem -  properly occurs after analysis and design are completed. In this regard 

"the generation of system documentation" is also important. Traditional 

methodologies depend on extensive documentation of requirements and 

specification which are supposedly to be completed before coding begins.

Also noteworthy is the comment that "in practice [the structured methodologies] are 

seldom followed to the most detailed level." This is undoubtedly due in some 

measure to the tedium and labor-intensity to which McClure calls attention, but it is 

probably due also to the awareness of those doing the work that because 

requirements and their corresponding specifications are never really finalized, by
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the time they could actually complete a structured design, the requirements would 

have changed and they would lose their labor.

Finally, note the implied connection between CASE and more traditional 

programming languages, especially structured programming languages. As we well 

see below, object-oriented technologies appear to offer a significant improvement 

over traditional CASE.

A survey of the main features offered in current CASE tools37 reveals the following 

ten basic functions, which I have grouped under four headings:

diagramming support

1. draw diagrams

2. check diagram consistency 

data management

3. provide requirements database and requirements tracing

4. provide data dictionary

5. provide repository management (for workgroups)

6. support change management and version control 

prototyping support

7. prototype (usually "screen prototyping")

8. paint screens 

code generation

9. provide facilities for porting between platforms

10. generate code

37 This particular listing is drawn from Kara (1992).
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With the exception of the last category (which we take up below in the section on 

automatic programming), each kind of tool is devoted, in its own way, to helping 

the designers learn about the systems they are building. The diagramming tools 

produce data flow diagrams, entity relationship diagrams, or program structure 

diagrams; or they do modeling -  systems requirements modeling, data modeling, 

behavioral modeling. All of these visualizations are aids to designers' 

understanding of the complex system they are creating. And of course where a 

team is doing the development, the diagrams help maintain coordination among the 

team members, by giving them a shared focus for discussion and a helpful 

visualization of what others are doing.

The tools for checking diagram consistency provide important feedback to the 

designers from the evolving design embodied in the diagrams. Automated diagram 

consistency checkers point out all the places where a version of the design is 

inconsistent or nonsensical, i.e., where the designers have not fully grasped all the 

ramifications of their actions. For example, sometimes designers w ill indicate all 

the inputs necessary to a particular module, but fail to specify any output. Diagram 

consistency checkers point out such flaws automatically.

The data management tools serve primarily to help maintain coordination among 

the members of a development team. Modern software development is very much 

a social process, as we have seen, depending on the contributions of many experts. 

In this context it is very helpful to have a shared database where a variety of 

information about the project can be stored and accessed. Because the 

requirements of a system gradually develop and change as the system takes shape, it
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is often helpful to have a history of their evolution, so that team members may 

understand why something is being done as it is. Repositories are databases where 

segments of code, modules of the system, can be stored and accessed by different 

members of the team. And of course as changes are made and different versions of 

the system are developed, it is important that coordination be maintained to avoid 

conflicts and inconsistent expectations. In a general way, all this information 

provided by the various CASE databases serves to help the developers understand 

what is happening, to grasp the nature of the systems they are developing, so that 

they may contribute their own knowledge to it.

The value of prototyping in aiding learning we discussed in the previous section 

and need not repeat at length here: it helps the designers understand the needs of 

the users and the users understand the operation of the evolving system, so that 

both may better come to understand what the system can and should be.

All these tools are tools for learning, for making sense both of what one has done on 

one's own and of what others on the same team have done and how that affects the 

whole. This kind of conceptual development is the designer's bread and butter.

If you watch how a designer works you see lots of things going on which 
give you some insight into the thought processes going on. Sometimes a 
designer is just trying out some new idea. Sometimes a designer is 
evaluating or making some catastrophic change to previous ideas 
(maybe about 90% of the pictures a designer draws get thrown away). 
Sometimes a designer is trying to customise something developed for 
another purpose. Sometimes two designers who have developed 
separate pieces of a solution are trying to bring them together.
Sometimes a designer is checking that all of the ideas actually hang 
together. One thing you w ill see is that very little time is actually spend 
on the finished product. (Robinson 1992, p. 4.)
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3.2. Object-oriented programming environments

Programming environments such as Smalltalk provide some additional tools not 

included in the above list of standard CASE functionality. (Smalltalk and similar 

environments are not generally called CASE tools, even though they are certainly 

instances of computer assisted software engineering in the simple meaning of the 

term). The nature of these tools also points to the learning aspects of software 

development, and suggests why Smalltalk has become popular for prototyping.

One of the most useful and important aspects of Smalltalk is that any chunk of code, 

no matter how small, can be run -  and produce meaningful results -  at any time. 

"Smalltalk is an incremental environment. Small, incremental changes are small 

efforts."38 The technical term for this is incremental compiling. The capability is in 

marked contrast to earlier programming languages, in which the whole program has 

to be complete and accurate before it can be run. The importance of incremental 

compiling to learning has to do with the complexity of software -  we might think 

we know what a piece of code does and how it interacts with other pieces, but 

often we don't. In developing a system, it is extremely useful to check in with 

reality at regular intervals, to make sure we understand. The ability to run each 

module of Smalltalk and look at the results gives programmers the benefit of this 

kind of rapid feedback from the system; it allows them to understand it better and 

sooner. As one programmer puts it, "your thought processes don't get interrupted;

38 Ward Cunningham, personal interview, October 1992.
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you don't leave the context."39 Additionally, incremental compiling leads to higher 

quality, because smaller chunks of code are easier to test.

A related capability of Smalltalk is a built-in debugger. This is a tool for tracing 

exactly what happens, step by step, so that when an error occurs or something 

unexpected happens, the programmer can find the cause of the problem easily.

This capability also provides rapid feedback and hence clearer understanding.

Ward Cunningham credits this feature with a large part of the reason why Smalltalk 

is such a good development environment:

There was never a risk of a bad bug, because whenever something went 
wrong, we'd get a notifier [debugger], hop in the notifier, and it would 
tell us what went wrong. We were never in a position where we didn't 
know the next thing to do to diagnose our programs.40

It is important that the ongoing interaction between the designer and the design not 

be interrupted too long. Less-capable languages cannot tell a programmer where 

something went wrong, only that it did. In these circumstances it is possible to be 

absolutely stumped. Accordingly, the programmer then has to search for the 

problem. In so doing, she loses the context; her thought processes get interrupted. 

Additionally, the whole program usually has to be recompiled and rerun before she 

can make sure that she has fixed the problem correctly. The sheer time this all 

takes is distracting; it makes it difficult for the programmer to concentrate on solving 

the problem before her.

39 Lee Griffin of IBM, personal interview, October 1992.

40 Ward Cunningham, personal interview, October 1992.
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The combination in Smalltalk of incremental compiling and the build-in debugger is 

especially powerful. When one "hits a bug" in Smalltalk, a debug window appears 

in which one can usually fix the problem quickly and easily. This change to the 

program is automatically and immediately compiled and linked into the rest of the 

program. Accordingly, it is not necessary to go back to the beginning, recompile 

and begin the program again. Instead, one can simply continue with the program in 

its newly repaired state, by pushing (with the mouse) the "Restart" button on the 

debug window. Smalltalk users find this feature extremely important.41

Another important feedback capability of Smalltalk is known as type checking. 

Smalltalk routinely checks the kinds or types of data that are being processed, 

making sure each data item is of a type which the method operating on it is 

equipped to handle. When Smalltalk discovers that this is not the case, it informs 

the programmer with a debug window showing where the incompatibility occurs.

In a sense, then, Smalltalk looks for problems, on the assumption that problems will 

occur.

O f course problems -  bugs -  do occur in all programming, but most programming 

languages are ill-equipped to help developers deal with them. Indeed, many 

languages pointedly lack these type-checking facilities, because they slow down the 

execution of the program. Traditional programming languages rely on the 

program's being correct; they assume that the end user is the only person whose 

efficiency needs to be optimized, and aim to give the end user the fastest possible

41 Richard Collum, systems developer in a large Smalltalk product at First Union 
National Bank of North Carolina, says simply, "The restart button is the greatest 
thing." Personal conversation, October 1992.
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program. Having type-checking going on is pointless, on this assumption, because 

the delivered program, by assumption, w ill be accurate; all the checks w ill turn up 

false.

Smalltalk, by contrast, recognizes in its very design that we live in a world of error. 

The designers of Smalltalk took very seriously the learning challenges of designing 

software, and therefore provided this type-checking facility to support software 

developers.42 One developer enthusiastic about object-oriented languages says, 

"these languages talk back to you and let you know when you are doing a good 

job." The difference between "Smalltalk and C+ + 43 is that Smalltalk talks sooner 

and louder when you are doing a bad job."44

Smalltalk also provides tools that give users a variety of different perspectives on the 

code. For example, there are hierarchically structured "browsers" for viewing the 

different elements of the code in the system. In addition to providing a handy 

means of looking up and accessing some particular class of code; browsers 

significantly aid understanding of software systems by providing a meaningful view 

of the relationships between different elements of the system. Where a piece of 

code is located in a browser window often carries more information than the details 

of the code itself. Smalltalk provides windows which display relationships between 

modules (objects) such as which kinds of objects send messages to others (messages

42 I am indebted Ward Cunningham for explaining this distinction.

43 Recall that C+ + is a hybrid language with certain object-oriented features.

44 Paul Ambrose, personal telephone conversation.
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trigger actions by the objects which receive them). It also provides windows for 

viewing the actual values of variables pertaining to particular elements of a system.

These different views into a complex system are very helpful in understanding it. In 

fact, the very value of the Smalltalk browsers and windows has stimulated the 

development of still other kinds of tools which give different perspectives into 

software systems, to make more understandable various different kinds of 

relationships. A complex system, by its nature, cannot be wholly understood. But 

it can be understood better and better in proportion that one has a variety of 

different perspectives on it. Each new perspective enriches one's understanding of 

the other perspectives, and hence of the system as a whole.

The common characteristic of these programming tools is that they all serve to aid 

the programmer in understanding the evolving software system. Such tools are 

valuable because software development is a learning process; by their nature they 

suggest how knowledge-intensive software development is. These tools help 

programmers learn what they are working with and what remains to be done. They 

show us that software development is not a mechanical matter of translating product 

requirements to code, but of learning what the software is and needs to become.

On this point, Mark S. Miller, formerly of Xerox Palo Alto Research Center and now 

co-architect of the Xanadu hypertext system, has said that he has reservations about 

tools that generate code from diagrams. He prefers tools with which

you write the code and have it generate the diagrams. That's superior 
because whatever you are programming in has to express the entirety of 
the program, and people have found words and symbols to be superior
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for that purpose. But the visualizing tools do a good job of representing 
a slice of or aspect of the program, with different tools providing 
different slices.45

Let us turn now to tools that generate code from diagrams, and other tools that, in 

general, relieve the programmer of writing code. In their evolution are more 

interesting lessons about software development as a social learning process, lessons 

which reemphasize the fundamental point that the development of new capital 

goods -  whether software or more physical capital -  is not a mechanistic affair, but 

a creative, dynamic learning process.

U i  Automatic programming

Automatic programming is a term we hear rarely now, but it refers to an important 

dream of the software community. Among its descendants is the automatic code 

generation provided by certain CASE tools. The goal of the advocates of automatic 

programming was to have computers, rather than people, write programs. As Mark

S. Miller explains, there are opposite opinions of its success, and each opinion, 

viewed from its own perspective, has validity.46

One view is that automatic programming was a total failure. Look around us; there 

are millions of people writing programs, in a process that is anything but automatic.

45 Mark S. Miller, personal telephone conversation.

46 I am indebted to Mark S. Miller as the source of most of the insights of this 
section and the next. Quotations are from my transcription of a telephone interview 
with him unless otherwise noted.
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Computers can't write programs; programming requires human imagination and 

creativity. On its terms, this majority view is certainly valid.

But the activity we call programming today is a different activity from that which 

was called programming years ago, when automatic programming was first 

advocated. At that time, says Miller, programming

was largely low-level assembly hacking; for example, it was concerned 
about what operand was in what register of the machine. As far as that 
activity is concerned, the advocates of automatic programming 
succeeded. They succeeded in automating what programming was then.

This success is thanks to the development of compilers for higher level languages. 

As M iller says it, "we now specify what computation needs to happen, and the 

implementation in particular machine instructions is handled by compilers." We 

make this specification in higher level computer languages -  languages which allow 

us to specify what is to happen in terms more abstract than the computer can 

handle directly. The compiler then transforms this more abstract coding into 

machine code that the computer can read. (Obviously each different computer 

language requires a different compiler for any given kind of machine.)

The historical change in terminology on which this disagreement turns is revealing 

about the very nature of software development. Miller explains:

[Tjhere was an incremental and gradual transformation overtime of what 
it means to program. The transformation was from programming's being 
primarily implementation-oriented to its being specification-oriented.
The implementation issues that were much of the programmer's concern 
in the old days are now handled by compilers.

To specify, in the software development context, is to state precisely what the 

program must do. In standard software engineering usage, specification occurs in a
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language more abstract than a programming language, typically a natural language. 

M iller continues,

However, there is an extraordinary number of levels of abstraction in the 
program. So when we think about specifying, at any point in the 
evolution of programming languages, what we mean is conceptual 
activity a few levels above where our programming languages are.
There's too much grungy detail in the languages for us, so we specify 
with higher-level abstractions. What we do when we go from 
specification to the current level of abstractions that our languages allow 
us to operate at, is now called implementation. A few years ago, yes, 
that implementation would have been seen as specifying, because then 
we had no languages that could handle that level of abstraction. But the 
particular tasks our term implementation refers to change over time, with 
our capacities. At any time in the evolution of programming languages, 
we see the level of abstraction that our languages permit us as "too much 
grungy detail."

What we called specification yesterday -  activity which is specification from the 

perspective of lower-level languages -  we call implementation today, because 

today we have programming languages that allow us to capture and express that 

level of abstraction, with compilers to do the work of transforming that abstract 

expression into machine code. Over time, as programmers' essential higher-order 

tools of production -  their programming languages -  have improved, what it means 

to program has changed.

What can we learn about the development of software capital from this slice of the 

history of programming? There are at least three lessons relevant to our present 

purpose, learning how the capital structure expands and improves.

First, there is a necessary role for the human imagination in addressing the 

particulars of each new capital need, in this case, each programming challenge. 

Computers cannot figure out what must be done to solve a particular new kind of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

112

challenge.47 This kind of task is fundamentally a learning process -  a matter of 

understanding the problem, and adequately expressing a software system that can 

address it. For the purpose of this expression, higher-level languages that enable us 

to express abstractions better are very helpful. We address this point at length in 

the next section.

Second, today's programming, i.e. design, is a profoundly social process in that it is 

entirely dependent on the division of knowledge embodied in tools. Everyone who 

uses a higher level language depends, for the realization of one's program in 

executable form, on the creativity, knowledge, and expertise of those who built the 

compiler one uses. Those who built the compilers have addressed for us, ahead of 

time, "the grungy details" of machine instructions. Their knowledge, their 

experience with what works well and what does not, is embodied for us in the 

compiler we no longer notice. Because they have taken care of lower-level 

automatable concerns, they free us to concentrate our efforts at higher conceptual 

levels.

In a similar category to that of compilers are the tools for generating code from 

diagrams or screen representations, and the tools for porting a system from one kind 

of computer to another. Examples include graphical user interface builders, code 

generators offered in certain CASE tools, and some visual programming languages.

In each case they let one specify what is wanted in one medium, generally higher- 

level and more abstract, and turn that specification into code more accessible to the

47 Perhaps profound advances in artificial intelligence will make this possible 
someday, but that day has not arrived.
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machine (or, in the case of tools for porting between different computers, to the 

target machine). What all these devices have in common is that they embody 

knowledge of how to transform one representation into another. They perform the 

transformations for us, freeing us to concentrate on the substance of what we want 

transformed.

A third lesson taught by this history is that as capital goods improve, there is a 

concurrent, complementary development in what people using the tools know and 

do. This is a very important species of social learning: what the relevant community 

-  in this case the programming community -  does in their everyday work advances; 

the community learns. Over time, the programming community has built up 

knowledge of how to make efficient use of raw computer resources -  how to 

manage the grungy details of machine instructions. It has also built up knowledge 

about what kinds of expressive capabilities are needed in computer languages. All 

this knowledge has been built into a set of gradually improving languages, and their 

related compilers. In an important sense, then, this community has learned a lot 

about programming. The whole community is in a sense smarter in their 

programming practices and tools. The change is reflected in the fact that what we 

mean by programming is completely different now from what is was twenty-five 

years ago. The change has been a social one in that the new knowledge is not to be 

found in particular individuals, but in the whole pattern of interaction among 

people, tools, and practices. Individuals don't necessarily know more -  in many 

cases they are clearly able to be effective while knowing less than their 

predecessors -  the knowledge that has developed is spread throughout the 

community, in tools, languages and practices over which no one individual has a 

complete grasp.
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3.4. tools for aiding dialogue

There are many ways in which object-oriented languages try to address the problem 

of social learning in design, some of which we have discussed already, and others 

of which we w ill take up in the next chapter. In the present context -  the 

development of new software -  probably none is as important as this: the "pure" 

object-oriented languages such as Smalltalk let software developers design and 

implement with a terminology that is suitable for thinking about the problems they 

are trying to solve. The terminology, it is said, maintains a "proximity to the 

problem space." Hence these languages, and the development methodologies built 

around them, are not just tools for expression, but tools for thinking and learning 

about complex systems.

Bertrand Meyer, a leading theorist of object-oriented technology and author of the 

object-oriented language Eiffel, points out that traditional languages are hard to read 

and understand; when we look at their code, the relationships are not clear to us. 

This, he surmises, helps explain why diagrams are so much a part of the structured 

analysis and design methodologies used with non-object-oriented languages.

"[Ajfter all," he says,

if you are programming in BASIC or C+ + you do need higher-level 
tools and notations if you ever hope to explain or just understand what is 
going on. But ...[wjith object-oriented techniques, implementation 
becomes high level enough to cover what was traditionally covered by 
design or even analysis. The same notation may be applied throughout, 
at various levels of detail. For analysis and design, high-level facilities 
such as classes... provide the key descriptive and structuring facilities.
For the final implementation, classes obtained earlier are completed with 
the details of the algorithms and data structure implementations. (Meyer 
1991, p. 39)
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"The same notation may be applied throughout" the development process, from 

high-level tasks such as analysis and design through to low-level implementation, 

for two reasons. First, as we have discussed, object-oriented languages, like other 

high-level languages, allow us to specify things in ways more removed from the 

concerns of the machine -  at a higher level of abstraction. But object-oriented 

languages are additionally significant, not because they are still more abstract than 

other recent languages, but because they let us create our own vocabulary, tailored 

to the problem space as we understand it, both for thinking about the problem and 

for implementing a solution to it. Programming the solution to a problem in a 

language like Smalltalk is a matter of creating objects and methods which represent, 

respectively, the entities we wish to model and their behavior. Meyer says

This is the seamless property of 0 -0  development, which yields some of 
the major advantages of the approach -  among others, the fact that the 
results of analysis and design are not lost or recorded in some obscure 
intermediate documents or diagrams, but fully embedded in the final 
delivered software. (Meyer 1991, p. 39)

We have said that building new capital goods is a matter of embodying knowledge 

in a usable form: object-oriented languages are effective tools for this embodiment 

because the terms in which they let us embody our knowledge are so similar to the 

terms in which we naturally develop and express that knowledge. Object-oriented 

languages provide software designers more immediate access to the problems they 

are confronting; in using terms with immediate relevance to problem domain, they 

avoid loss of meaning in translation. In a sense, they shorten the conceptual 

distance between the knowledge that goes into the new capital good and the good 

itself. In much traditional structured analysis and design, the designers do their 

thinking with diagrams, which then must be converted into code by some
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translation process. Object-oriented languages, by contrast, allow the designers to 

think in understandable code, thereby providing them a more immediate grasp of 

the system.

Object-oriented languages, then, help us to bridge the semantic gap between 

analysis, design, and implementation. There is no semantic gap, because the 

semantics are the same throughout. In this respect, object-oriented languages are 

superior tools for thinking about -  learning about -  complex systems. One 

important result is to facilitate communication among people with different kinds of 

knowledge to contribute to the software. Knowledge Systems Corp., a major 

development consultancy firm specializing in Smalltalk, has extended the object- 

oriented approach into a methodology (on which they are still working). They

have found, by modeling entities in terms of their behavior and 
interaction, that both internal software objects and external entities can 
be represented in such natural ways as to be accessible to non-computer 
professionals like users and domain experts. (Adams 1992a, p. 5)

This methodology takes the idea of software development as a social learning 

process to its fullest extent. In order to begin developing the Smalltalk classes that 

w ill eventually be used in prototypes and evolved into a complete, running system, 

the software designers at Knowledge Systems Corp. use role playing. The process is 

overtly social, in that various different people with different knowledge and skills 

are involved on the spot, and it is overtly a learning process in that it is a trial-and- 

error method of discovering what the important objects in the software should be, 

and how (by what methods) they should interact with one another. We quote at 

length from Sam Adams' description of their experience:

While most methodologies rely on diagramming notations to attempt to 
capture and communicate complex interactions between objects,
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roleplaying allows the designers to actually experience the behavior 
firsthand. This theatrical anthropomorphism has many benefits in the 
design process. Since designs can be "executed" very early in the 
process using scenarios, alternative designs can be explored easily using 
roleplaying as a form of rapid prototyping. Designs as complex as entire 
manufacturing systems can be simulated in surprising detail, taking 
advantage of the temporal and spatial nature of roleplaying that can be 
only poorly captured on paper... An additional benefit of roleplaying in 
design groups is that it tends to help involve everyone in the design 
process, regardless of their background or experience, so all participants 
can add their unique value to the process. (1992a, p. 6.)

We should note here that object-oriented technologies, and the methodologies 

aimed at rapid learning which they support, come at a cost; their benefits trade off 

against other considerations which make them inappropriate for some kinds of 

software projects. A language such as Smalltalk, which allows programmers to 

work at a high level of abstraction, generally runs more slowly than a language 

more oriented toward the concerns of the computer. In cases where speed of 

execution is paramount, it makes more sense to use a non-object-oriented language 

such as C, which makes optimal use of the machine's speed and memory. Also, 

where a problem domain is well understood, prototyping may add little to the 

programmers' understanding of what they must accomplish. Object-oriented 

languages and techniques are most valuable where exactly what is to be done is 

unclear, and where it is more important for the software do what is wanted than to 

do it as fast as possible.

Finally let us offer one somewhat philosophical perspective on software 

development as social learning. The accessibility of OOPS, the manner in which it 

empowers thinking about problems and expressing their solutions, demonstrates to 

what great extent learning occurs in the context of the social world, with its shared 

meanings captured in language. Higher level languages have increasingly let us
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move away from the mundane concerns of the machine to concentrate on more 

general and meaningful abstractions. Software designers using higher level 

languages are much less distracted by the needs of the machine; their attention can 

be focused on the needs of the system they are building, in terms of the system and 

not the computer. Object-oriented languages and object-oriented methodologies 

such as that being developed by Knowledge Systems Corp. let us take a very large 

step in this direction, into the world of human discourse and imagination. In the 

objects and methods of object-oriented languages we have something akin to the 

nouns and verbs of the language of society. Accordingly, with object-oriented 

languages our powers of expression and understanding improve substantially, 

informed by the richness of meaning that comes with evolved language. Because 

software development is a social learning process, it gets easier as we become 

better able to do our thinking in terms of the social world we live in.

4. Summary

An examination of the tools and processes used in software development show it to 

be a social learning process. The process is a kind of dialogue in which dispersed, 

tacit, incomplete knowledge is brought together and embodied in new software 

tools. The process comprises interaction between users and designers, between 

users and the evolving tools, and between designers and the evolving tools. It is an 

iterative process in which the evolving tool itself serves as the medium of 

communication, with each new round of the dialogue eliciting more useful 

knowledge from the different people involved.
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As programming practice has evolved, higher-order tools have been developed to 

facilitate the process. Some of these, such as compilers and code generators, serve 

to automate the clearly understood aspects of the process. These can be seen as 

freeing human effort to undertake, at ever higher levels of abstraction, the creative 

learning that is the essence of design. Most of the tools now used to facilitate the 

design process help software builders to get a better understanding of the complex 

systems they build. The most promising of these tools are the object-oriented 

technologies, which allow us to create the kinds of abstractions we need both to 

think about the problems effectively, and to specify their solutions.
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Chapter 4

Capital Evolvability: Lessons from Software 

Maintenance

Knowledge comes, but wisdom lingers, and I linger on the shore,
And the individual withers, and the world is more and more.

- Tennyson, "Locksley Hall"

...when you realize that much o f the software problem has to do 
with building very complex systems that w ill run on networks with 
different kinds o f hardware, and that no application w ill be 
considered done when shipped, you're inescapably led to a much 
more biological, modular system, for which something like objects 
w ill be required.

- Alan Kay48

1. Introduction

The process of software development does not end when the first version is shipped 

to the customer. It continues throughout the life of the product. The world 

changes, hence the software must change with it, if it is to maintain or increase its 

value as a useful capital good. Users' requirements change as their businesses 

change; the software needs new features to keep up with competitive products; it 

needs to run on new machines, to be used on networks, to drive new printers and 

plotters; etc. On the broadest view, as the economy grows and develops through 

the accumulation of new knowledge and its embodiment in new tools and new

48 (1992, p. 13)
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systems, software products must themselves "learn" -  develop and improve -  to 

maintain and improve their position of usefulness in complement to the other 

elements of the evolving capital structure.49

The process of adapting and enhancing existing software is known as softw are  

maintenance. It is challenging and costly. At present, the software industry is very 

concerned about maintenance, as evidenced by advertisements such as the 

following, which included a graphic of a hooded skeleton with a scythe, typing on a 

computer keyboard:

Why Your Software W ill Die Before Its Time.
Entropy. It's the Grim Reaper of software development. As your code is 
modified and enhanced over time, its structure gradually breaks down.
Until one day it simply can't be maintained anymore -  not by you, not 
by anyone.50

The kinds of changes driving today's severe maintenance challenge, as well as their 

perceived importance, are suggested by the following lead copy from a twelve- 

page, four-color, glossy advertisement that was pasted into the November 2 issue of 

Computerworld. a major weekly news publication of the computer industry:

Today, information management professionals face more daunting 
problems than ever before. The applications you develop must meet 
business needs that seem to change daily. Mergers and acquisitions

49 Lachmann writes,

...it is impossible to receive a permanent income stream unless its source 
has been kept intact, and ... this requires a problem-solving activity 
which may succeed or fail. Maintaining the value of capital resources is 
an important economic function. (1986, p. 73)

50 Set Laboratories advertisement in CASE Trends. Vol. 4, no. 6, September 1992.
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create demanding integration scenarios. The introduction of new 
technology brings with it the need for multiple platform deployment.
You're feeling pressure for client/server processing from management 
and users alike. Meanwhile, the backlog of existing applications you 
need to maintain and enhance keeps growing.51

As computer systems have become larger, more complex, and more important to 

the success of enterprises, maintainability has assumed greater and greater 

importance. Software systems which are readily maintainable allow their 

enterprises to adapt quickly and smoothly to changes in their environment. Those 

systems which are not maintainable become a terrible burden, especially if they are 

essential systems. Accordingly, it has become more and more important to software 

engineers to build systems which not only work well now, but which also can be 

evolved without difficulty. In this chapter we examine, not the process of software 

maintenance, but the characteristics of maintainable software systems.

In the preceding chapter we described software development as a social learning 

process, and held that in an important sense it is the capital goods themselves that 

learn -  the software embodies the knowledge of many contributors, each of whom 

knows only a little of what the others know. Only in the software itself is all the 

relevant knowledge to be found. It follows, then, that what it means for software to 

be maintained -  changed, adapted, enhanced -  is for it to come to embody more 

and different knowledge than it embodied before. Our task, therefore, is to look for 

the characteristics which allow software to embody new knowledge readily. These 

characteristics can be summed up in a single word: modularity. We will see that

51 KnowledgeWare advertisement, insert, Computerworld. Vol. XXVI, no. 44, 
November 2, 1992.
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because software development is a social learning process, modularity is essential 

to software evolvability. To continue the figure of speech of software "learning," in 

this chapter we will be investigating the aspects of modularity that allow software to 

learn.

Let us make clear here at the outset what we mean by software maintenance. The 

term may seem strange to those unaccustomed to its usage in the software field, 

because software does not wear out, and hence should need no maintenance. But 

as Hayek has stressed (1935), to maintain capital is fundamentally to maintain its 

value in the evolving capital structure of which it forms a part. Obsolescence is just 

as important as wear and tear. On this view, the term is not misapplied. It refers to 

any activities aimed at keeping software running as needed, from mundane fixing of 

bugs to adding enhancements.

As the term is used, however, it refers to more than simply activity which prevents 

software from losing value; it refers also to development of the software which may 

increase its value. As Sam Adams stresses, software "should be treated as a 

corporate asset that can appreciate through investment in its quality and 

reusability." (1992b, p. 6) In this work, by software maintenance, and related terms 

enhancement and evolution, we will mean any changes made to software aimed at 

maintaining or increasing its value by improving its usefulness in the evolving 

capital structure. We mean, in short, investment in existing software assets.

Note that we draw no sharp distinction between the activities involved in initial 

software development, and those involved in software maintenance. Indeed, many 

software developers mislead themselves in seeing these activities as somehow 

different and separate. Software development seems to be an ongoing learning
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process, with much the same kinds of activities carried out whether a first version of 

a product has been shipped or not. The dialogue-like process that goes on among 

various users and designers at early prototyping stages continues in one way or 

another through "the maintenance stage." At this point, users are not reacting to a 

prototype, but rather to a delivered version of the product proper. Nevertheless, the 

users are still learning from the software, the designers (maintainers) are still 

learning from the users what is needed and from the developing software what is 

possible. There is continuity between initial software development and 

maintenance. The categorical distinction turns not so much on what the software 

developers but on the legal and contractual issue of whether an agreed-on first 

version has been shipped or not.

The reason we focus on maintenance for the purposes of this chapter is that in 

maintenance the greater or lesser ease of adaptation appears. By looking at 

software that is hard or easy to maintain, we gain insight into the design 

characteristics of evolvable software. But it should be noted that we are really 

interested in design issues -  how do we initially design software so that it w ill be 

maintainable, so that it can be improved over time?

2. Evolvability as a design goal

There is general agreement in the software industry that ease of maintenance is 

fundamentally important. Practitioners in the software world clearly expect 

continuous change, though they cannot know just what those changes w ill be. In 

Frank Knight's terms, they face uncertainty. (Knight 1971) They are foresighted,
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though without clear vision of the future.52 Accordingly, they must plan as best 

they can to meet those changes, whatever they may be. As Hayek says,

With respect to [changes of technical knowledge or invention] the idea 
of foresight evidently presents some difficulty, since an invention which 
has been foreseen in all details would not be an invention. All we can 
here assume is that people anticipate that the process used now w ill at 
some definite date be superseded by some new process not yet known 
in detail. (1935, p. 97)

It appears that software developers have not always anticipated that change would 

come as soon as it generally does. As we have seen, in earlier days many software 

developers seem to have overlooked the pervasiveness of change, and tried to build 

software to specifications they assumed to be fixed. But the years have made the 

lesson clear. Change never ceases. Indeed, it seems to accelerate. Accordingly 

developers now try to build software so as to facilitate change in general. Good 

design, in an uncertain world, is design which prepares for change. A major goal of 

good software design, then, is to ensure design evolvability.

2.1. Co-evolutionary development

The evolution of complex systems, such as the capital structure, is not a movement 

toward some particular endpoint, or even in some particular direction. Evolution is

52 Lachmann writes

[T]he purpose of all capital, hence also of the current maintenance of 
existing capital goods, is to secure a future income stream. But the 
future is unknowable, though not unimaginable, and men have to use 
knowledge substitutes in order to evaluate future income streams, viz. 
expectations. (1975, p. 2)
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necessarily coevolution of the different elements of the system. In the capital 

structure, this means that which tools become useful and which become obsolete at 

any time is determined by what other tools happen to be developed also, and what 

other technologies happen to be discovered.53 The development and availability of 

any particular technology changes the opportunity costs of developing any related 

good, whether substitute or complement, and thereby changes the appropriateness 

of any particular investment.

Consequently "the best solution" to a particular problem is a mirage that appears 

when one fixes on the moment. In another moment the problem will have 

changed, and there will be a new "best solution," for the simple reason that others 

have been working on related problems. There is no fixed skeleton or underlying 

architecture for the capital structure. The skeleton, the architecture, grows as 

particular entrepreneurs make particular choices. Each choice in response to a 

particular aspect of a problem poses a new, or at least a changed, problem for other 

participants in the process. In the words of Peter Allen, a specialist on evolutionary 

dynamics at the International Ecotechnology Research Centre:

Evolution is not just about the solving of optimization problems, but also 
about the optimization problems posed to other populations. It is the 
emergence of selfconsistent 'sets' of populations, both posing and 
solving the problems and opportunities of their mutual existence that 
characterizes evolutionary dynamics. (Allen, 1990, p. 25)

f
Software developers, then, must try to build their products so that they can be 

evolved in such a way as to maintain a reasonably good fit in the evolving capital

53 Other factors include people's expectations, the interest rate, availability of 
skilled personnel, etc. See Lachmann (1986) and Hayek (1935).
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structure around them, regardless of how -  out of a broad continuum of possibilities 

-  that capital structure may evolve.

Ul The Optimization Trap

Crucially, this means that optimization of software for any task as defined at a 

particular moment, should frequently be sacrificed for greater flexibility of design. 

This is not to say that achieving an excellent fit between software and given task 

should be ignored; of course suitability to a particular set of specifications is 

important. But hard experience has shown optimization as such to be highly 

problematical, because optimization trades off against flexibility. As Bertrand 

Meyer puts it, in discussing tradeoffs among different goals of software design,

...optimal efficiency would require perfect adaptation to a particular 
hardware and software environment, which is the opposite of 
portability,54 and perfect adaptation to a particular specification, whereas 
extendibility and reusability55 push towards solving problems more 
general than the one initially given. (1988, p.7)

Software designs, in today's business environment, are like organisms in an ever- 

changing eco-system: if they cannot mutate with reasonable ease, the species is 

likely to disappear. In this we find an illustration of a basic principle of evolution.

In Peter Allen's words,

...evolution does not lead to individuals with optimal behavior, but to 
diverse populations with the resulting ability to learn. The real world is

54 Portability is the ease with which a program built for use in one environment, 
e.g. on one kind of computer, can be adapted for use in a different environment.

55 We discuss extendibility and reusability below.
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not only about efficient performance but also the capacity to adapt.
What is found is that variability at the microscopic level, individual 
diversity, is part of evolutionary strategy... In other words, in the shifting 
landscape of a world in continuous evolution, the ability to climb56 is 
perhaps what counts, and what we see as a result of evolution are not 
populations with "optimal behavior" at each instant, but rather actors 
that can learn! (Allen 1990, p. 15)

In other words, to be successful over time, the entities that populate complex, 

dynamic systems -  whether species in the natural world or software systems in the 

capital structure -  must not be optimized for a certain set of conditions, but evolved 

for evolvability. In the software setting, the "actors" are software product lines, 

which compete in the economy for wider use. A product perfectly adapted for, say, 

an IBM mainframe system using identical terminals all at one site is likely to be in . 

trouble when the company using it decides to downsize to a network of various 

workstations and PCs, communicating over a network spread across five cities. That 

species of software would be much more survivable were it less optimized and 

more evolvable.

2 3 , Aspects of software evolvability

There are two main kinds of software evolvability for us to consider. In Bertrand 

Meyer's terminology, these are as follows:

56 "Climbing" here refers to "hill-climbing," a metaphorical term in ecology 
referring to the ability of a species to develop characteristics that enable it to 
flourish -  to climb the "hill," defined in characteristic-space, of characteristics suited 
to survival in a given configuration of populations and resources.
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• extendibility - the ease with which software products may be adapted to 

changes of specifications, and

• compatibility - the ease with which software products may be combined 

with others. (Meyer, 1988, pp. 5-6.)

It is important to remember that all software, except for very simple, short programs, 

comprises systems of related functionality. To maintain awareness of the 

complexity of software, it is frequently helpful to think of it as being more like a 

factory, embodying a variety of machines and processes all working together, than 

like a single machine. From this perspective and in Lachmann's terms, software 

extendibility is a matter of capital recombination. In adapting software to changes 

in the specifications, some elements of its functionality are eliminated, some 

replaced, and others added; in much the same way that in retooling a factory to 

new production demands, some machines or processes are eliminated, replaced, or 

added. Software extendibility is the ease with which these changes can be made.

Similarly, software compatibility is matter of capital complementarity and (multiple) 

specificity. A software application is compatible with others when a 

complementary relationship can be easily established with them. It is incompatible 

when the different packages are so highly specific to some original purpose or 

context that they cannot easily be made to work together.

In this discussion it is important to remember that our attention here, as throughout 

this work, is primarily on designs, rather than on particular instances of designs. For 

instance, we are more concerned with how hard or easy it is for Microsoft Corp. to 

evolve the design of Word for Windows -  enhancing it or enabling it to work
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smoothly with some other programs -  than with how hard or easy it is to change 

the copy I use to write these words. Similarly, in applying the lessons we learn here 

to "hard" tools, we are more concerned, say, with how easily a locomotive 

manufacturer may design the next generation of locomotive, than with how easily 

some railroad company may rebuild a particular engine to achieve higher levels of 

performance. Maintaining the value of particular instances of capital goods is 

important (especially when doing so in fact involves design changes), but our focus 

here is more on how the design itself -  the state of the art in word processors or 

locomotives -  evolves. This outlook seems consistent with Austrian capital theory. 

When Lachmann refers to a vintage locomotive's gradually being relegated less and 

less important duty, and ultimately to the scrap heap, he makes clear that it is 

"kicked downstairs" further and further by "the march of progress" -  not by newer 

instances of the same model, but by a succession of newer designs using better 

technologies.57

The challenge of software maintenance, with its corresponding imperative that 

software be evolvable, casts an interesting light on the work of Hayek and 

Lachmann on capital maintenance and capital evolution. Both address issues of 

restructuring, of investments and capital combinations, when inevitable changes 

occur. Neither, however, emphasizes the issue raised here, of maintaining 

flexibility in the capital structure so as to be able to cope with future changes that 

cannot be fully anticipated. Lachmann, for example, in Capital and Its Structure 

speaks of "the changing pattern of resource use which the divergence of results

57 (1978, p. 38). Lachmann quotes an elegant passage from Dynamic Equipment 
Policy (1949, McGraw-Hill), by George Terborgh.
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actually experienced from what they had been expected to bef imposes on 

entrepreneurs." (1978, p. 35, emphasis added). Similarly, in "Another Look at the 

Theory of Capital" he says,

The capital stock in existence always contains 'fossils', items that w ill 
not be replaced and would not exist at all had their future fate been 
correctly foreseen at the date of their investment. (1986, p. 61, emphasis 
added)

Focusing as he does on changes that must be made in the capital structure when 

entrepreneurs incorrectly forecast the future, Lachmann may seem to suggest that 

entrepreneurs fully commit themselves to their vision of the future, tying their 

capital investments tightly to the future needs they anticipate, and allowing 

themselves no flexibility to adjust if events take a different path. In such cases we 

can properly speak, as Lachmann does, of "failure" and "error."

Here we suggest that frequently entrepreneurs do not commit themselves so 

completely to a particular view of the future, but rather make their best estimate of a 

range of likely outcomes, and build into their capital goods a flexibility with which 

to cope with this range of outcomes. There is a tradeoff here, of course. More 

flexibility w ill generally mean less perfect suitability to a particular set of 

circumstances, and some entrepreneurs might choose to bet their companies on the 

details of their foresight, seeking the higher return that w ill come from greater 

suitability. Others w ill accept a slightly lower prospective gain, building in more 

flexibility to allow them to adapt better. The upshot is very much the same, of 

course: there must be constant adjustment because the future was not, and could 

not be, correctly anticipated in all its detail. But many of the imperfectly adapted
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capital goods in use at any time can be seen as imperfect not as a result of failure, 

but as a result of planned flexibility.

3. Evolvability through modularity

It is generally accepted in software engineering that modularity is crucial to software 

extendibility, compatibility, and also reusability, which we take up below. Why? 

How does modularity facilitate evolution? What aspects of modularity are 

important, and how are they related to characteristics of the social learning process? 

These are the questions we take up in this section.

i l ,  How modularity promotes evolvability

Simply stated, modularity leads to evolvability because in order for a software 

system to evolve smoothly, its overall structure must allow the maintainers 

(enhancers) of the system to pull out some part of the system's functionality and 

replace it with better, and/or to add new functionality, without too much difficulty. 

When software architecture is appropriately modular, with functionality 

encapsulated in relatively independent modules, these changes are relatively easy, 

because they are confined to a few modules. In non-modular architectures, by 

contrast, there are lots of interdependencies among different parts of the system 

which make the adaptation or extension very hard to accomplish, because so many 

different parts of the system are affected.

In this respect it is essential to note that the sheer amount of work involved is 

usually not the issue; the issue is grasping what work is to be done. True, where 

there are lots of interdependencies among different parts of the systems (we don't
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call them modules because the existence of many interdependencies implies that 

the system is not modular), there w ill be more work to do bringing the whole 

system into coordination when a change is made. But more important than simply 

doing all this work is the danger that it w ill not be clear what must be done. A non- 

modular system w ill be significantly more difficult to understand than it might be. 

Accordingly, when functionality is added or changed, it is not clear what parts of 

the system are affected, and a great deal of effort must be expended finding out 

where problems remain. Here again is the complexity constraint we mentioned in 

Chapter 2. Software development is a learning process; if a system cannot be 

understood, then further learning in respect to it is encumbered. In extreme cases 

of multiple interdependencies in large systems, the system becomes literally 

incomprehensible; then adding or changing functionality in any but trivial ways is 

so difficult that the task is not one of change, but of beginning again and recreating 

the system entirely.

Modularity makes possible the evolution of extremely complex systems because the 

modularity allows people to understand the system in pieces at various levels of 

abstraction. Each module is understandable as an entity on its own, and the overall 

system structure is understandable in terms of the relationships among these 

entities. While no one can understand a whole system in its entirety all at once, in 

order to maintain the system it is necessary only to understand clearly defined 

pieces of the whole, and their interrelationships with near neighbors.

An important factor here is the limitation on what participants in the development 

process need to know. This is called information hiding; we take it up in more 

detail below. Information hiding facilitates division of knowledge in the
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development process by making it unnecessary for a programmer working on one 

module to know very much about another module. Generally speaking, all one 

needs to know is what services a module provides, and how to ask for those 

services. How those services are provided is irrelevant.

Finally, appropriate modularity promotes evolvability because it leads to 

decentralized rather than hierarchical architectures, making it is easier to add 

functionality. Traditional design approaches frequently involve functional 

decomposition, in which a central function or purpose for the system is 

systematically decomposed into subprocesses at ever more fine-grained levels. In 

such architectures, it is difficult to add pieces without reconstructing much of the 

whole. Modular architectures, by contrast, tend to be designed by representing the 

various parts of the system being modeled. With such decentralized architectures, 

the pieces have a more equal relationship; the structure is more organic. Adding 

functionality is more like adding a node to a network than reconstituting a rigid 

skeleton.

12* Kinds of modularity

What, exactly, do we mean by modularity? What are its aspects? There are several, 

and they are not all complementary. In fact, designers must often decide among 

different aspects of modularity when conflicts arise. The following list comes from 

Bertrand Meyer's well-regarded Object-Oriented Software Construction. These are 

Meyer's criteria for helping evaluate design methods with respect to the modularity 

they yield. (1988, p. 12ff.)
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modular decomposability

This is the ability to decompose a problem into several subproblems, each of with 

may be worked on separately. This kind of modularity is essential to take advantage 

of specialization and the division of knowledge. If different individuals or teams are 

to be able to work on a problem at the same time, that problem must be 

decomposable into subproblems.

modular composability

Quoting Meyer,

A method satisfies the criterion of Modular Composability if it favors the 
production of software elements which may be freely combined with 
each other to produce new systems, possibly in an environment quite 
different from the one in which they were initially developed. (1988, p.
13)

Composability is an matter of multiple rather than single specificity. If we are to 

take advantage of division of knowledge, then we need to depend on others' 

contributions, and we would like to enable sharing across time and place through 

embodiment of knowledge in composable modules. Where modules are 

composable, then it is not necessary to build anew when a new need arises for the 

functionality they provide. Composability provides economies of scope in design.

It is a matter of great importance in software development; we take it up below in 

section 5.

Note that composability may be at odds with decomposability: decomposing a 

problem into finer and finer subproblems may yield modules highly specific to the 

problem at hand, not generally applicable to other kinds of problems.
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modular understandability

This is the ability of a module to be understood on its own by a human reader, or 

with reference to at most one or two related modules. Code is not modularly 

understandable if it is meaningless except in context. It is modularly 

understandable if one can perceive what it does even in isolation from other 

modules. Understandability is a communication and coordination issue, important 

because software development is a social process. Whenever more than one 

person works on a software system, or even when a single person works on a 

system over time, coming back later to code that she wrote some time before, 

understandability is important, because it reduces the knowledge overhead for 

each individual who works on it. Consequently understandability is also a division 

of knowledge issue, because if understanding one module requires knowledge of 

many others, it is difficult for someone to specialize.

Understandability is of course essential during maintenance, when programmers 

other than those who built the code have to work on it. Generally, modules that 

correspond to identifiable abstractions in the real world tend to be more 

understandable than those that do not.

modular continuity58

This is the characteristic that small changes in problem specifications require 

changes in only one or a few modules. It has fundamentally to do with localization

58 Meyer takes the term by analogy to continuity of functions in mathematics, in 
which small changes in variables lead to small changes in results.
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of change. In everyday terms, a small change in specifications should require only 

a little bit of work. An illustrative counter-example of continuity is the great 

disturbance caused in many non-modular business software systems when the Post 

Office switched from five-digit zipcodes to the present nine-digit zipcode. Many 

software systems did not localize their treatment of zipcodes, and had to be 

extensively rewritten at great expense.

Continuity is important because the learning process of software development does 

not stop. What the software must do w ill change; the more easily these new needs 

may be accommodated, the better.

modular protection

Quoting Meyer again,

A method satisfies the Modular Protection criterion if it yields 
architectures in which the effect of an abnormal condition occurring at 
run-time in a module w ill remain confined to this module, or at least will 
propagate to a few neighboring modules only. (1988, p. 17)

Modular protection might at first seem insignificant to the software development 

process as such, because it concerns run-time problems -  problems that occur when 

the software actually operates, not problems that occur in getting it to operate. But 

there is an important implication for software development, given that software 

development is an uncertain, somewhat experimental process. That is, where there 

is modular protection and errors tend not to spread, programmers feel more free to 

experiment and hence to discover solutions. Ward Cunningham reports, for 

example, that in his team's development of the WyCash+ portfolio management 

package, which is built in Smalltalk with careful attention to modularity, they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

138

sometimes attempted major rearchitecting of the system. Sometimes the attempt 

would fail and they would have to revert to a previous version, but on other 

occasions they could accomplish very significant change with surprising ease.59 By 

contrast, one frequently hears that programmers who work on large programs built 

with conventional techniques and without the support of object-oriented languages 

are "terrified to make changes because they are afraid that it will break."60

4. Design principles that yield modularity

Now that we have examined the benefits and meaning of modularity in software 

systems, let us turn to the practical matter of how modularity may be achieved.

From a slightly broader perspective, this is a matter of asking what kinds of 

characteristics enable software capital to evolve well. Putting it metaphorically, we 

are asking what makes software flexible.

Kent Beck, a well-known Smalltalk expert and president of First Class Software, has 

observed that, "when you are in a brittle medium," it is important to do separate 

analysis and design on any software project before beginning coding, in order to 

avoid downstream costs and problems.61 (It is often necessary despite the problems 

we saw in the last chapter: that necessary knowledge is often unavailable until users

59 Personal interview, October 1992.

60 This observation was made to me by Bill Waldron of Krautkamer Branson in 
informal conversation. Krautkamer Branson builds ultrasonic flaw detection 
devices, using the C language for their software.

61 Personal interview, October 1992.
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have a chance to see and use a running version. The point is that when program 

development is done in an unforgiving programming language, there may be no 

alternative.) One of the main downstream costs is the plain inability to make 

changes one would wish to make. One designer at IBM observed that C programs 

often stay unwieldy and difficult to work with, because when a team perceives 

some kind of major change they would wish to make, they must proceed with their 

current, inferior design because there would be just too much to change to get the 

program the way they would like it.62 (This designer was working, at the time he 

made the comment, on a system built in C. He wished to return to Smalltalk, with 

which he claimed he could be ten times as productive).

When one is in a flexible medium, however, it becomes far more possible to let 

analysis, design, and implementation occur together, without encountering 

excessive downstream costs and problems. When the medium is flexible enough, it 

is not so costly to make changes downstream as one learns. In brief, maintenance is 

easier.

What are the design characteristics that allow software to evolve, that allow new 

knowledge to be built in smoothly? Again following Meyer, we can identify five, 

and we quote his statement of the modularity principles in each case. (Meyer 1988, 

pp. 18-23). Each of these principles is rooted in the social nature of software 

development: for software to be extended and enhanced, people must work on it, 

generally in groups. These principles facilitate that group effort.

62 Lee Griffin of IBM Corp., personal conversation.
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4.1. Linguistic modular units

"Modules must correspond to syntactic units in the language used."

This principle requires direct mapping of terms in the programming language to 

design elements (and further, ideally, to real world entities being modeled in the 

software system). Sometimes this feature is known as "proximity to the problem 

space": the terms used in the programming language refer directly to modules of the 

system, which represent elements in the problem space. In business programs, for 

example, there might be modules such as P u r c h a s e O r d e r ,  C u s t o m e r ,  and 

C r e d i t C a r d C o m p a n y .  In a design which holds to the principle of linguistic 

modular units, real world purchase orders would be represented by separate 

purchase order modules in the software, in which P u r c h a s e O r d e r  is a distinct

syntactic unit.

The crucial benefit of linguistic modular units is that they make it easier to think 

about and understand complex software systems. This is important both in helping 

individual programmers understand the systems they are working on, and in 

enriching the dialogue among designers, users, and programmers, who can use the 

same terminology in describing the system from their different points of view.

To see the value of this principle, consider that in older programming languages, 

modules frequently were not identified linguistically within the programming 

language. They might stretch, say, from line 450 to line 755, and be accessed by a 

statement such as, "GOTO l i n e  4 5 0 ."  The necessity simply to remember what

happens in the module is obstructs programmers' progress; it is much easier to work 

with a statement such as, " P u r c h a s e O r d e r  n e w  i n i t i a l i z e . "
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4.2. Few interfaces

"Every module should communicate with as few others as possible."

The more interconnections there are between modules, the more likely it is, when 

one of them needs to be changed, that those to which it connects w ill have to be 

changed also. Thus, for the sake of continuity, the number of interconnections -  

interfaces, in software terminology -  should be restricted. Restricting the number of 

interfaces helps maintain the division of knowledge, because those responsible for 

interacting modules must coordinate when changes are made, and if only a few 

modules interact, then there is less coordination overhead, less propagation of 

change.

Having numerous interfaces, with their associated rigidities is a common 

consequence of centralized designs. Generally speaking, in centralized, top-down 

structures, most of the modules at the periphery need to communicate in some 

fashion with the modules at the center, which are responsible for reconciling their 

interactions. The soviet-type economy comes to mind. The difficulty is that 

everything depends on proper operation at the center, and if a problem occurs there 

or some change becomes necessary, everyone is affected. Furthermore, centralized 

structures imply some fundamental, overarching purpose.

By contrast, there are

...more "libertarian" structures, [in which] every module just "talks to" its 
two immediate neighbors, but there is no central authority. Such a style 
of design is a little surprising at first since it does not conform to the 
traditional model of functional, top-down design. But it may be used to 
obtain interesting, robust architectures; this is the kind of structure that 
object-oriented techniques tend to yield. (Meyer 1988, p. 47)
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In such structures, dependencies are greatly reduced. Additionally, these structures 

lend themselves to systems in which there is not one clear purpose, but rather a 

variety of different services that the software may provide its users. As an economy 

has no central purpose, and therefore functions best according to decentralized 

interactions among the agents that constitute it, so also many software systems have 

no central purpose, and therefore are best structured in a decentralized manner. 

Good examples of such systems are the increasingly popular "enterprise models." 

These are essentially software representations of an entire enterprise. The modules 

represent, say, different divisions of a business or different processes that occur 

within them, and the interfaces among modules represent the interactions among 

related parts of the business.

4*2, Small interfaces (weak coupling)

"If any two modules communicate at all, they should exchange as little 
information as possible."

Meyer's statement of this principle is perhaps overstated. The point of this 

principle, as of the last, is to reduce dependencies, rather than to reduce 

communication. The difficulty this principle seeks to avoid is having modules 

depend on a large amount of shared information -  more than what they actually 

need to interact usefully.

There are a number of difficulties with extensive dependencies. One is that 

modules become "tightly coupled" in depending on a lot of the detail of one 

another, or on some shared data source. This hurts evolvability, because when 

some part of that detail or data changes, the modules must be rewritten, and when 

errors occur, they propagate widely. Furthermore, when one module has access to
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much of the detail of another module, there is the danger of interference. What this 

means in practice is that in the development process, programmers w ill be tempted 

to use too much of the available information in the design of their own modules. If 

and when that information changes, module design must change, too. Moreover, 

when modules communicate too much information, programmers may 

inadvertently use more of it than is safe, without even being aware that they are 

doing so. The danger is no less for experienced programmers than for 

inexperienced, because the experts might be additionally tempted to "make clever 

use" of some of that information, which may later change. Simply put, this 

principle holds that modules should be as independent as possible.

Object-oriented techniques, as we have said, address this issue by the equivalent of 

property rights to data, (Miller and Drexler 1988) achieved through encapsulation of 

data and message passing. No object may directly access some other object's data; 

that is private, and contained within the object. Instead, one object gains the 

services of another through passing a message: the message contains only the data 

needed by the service providing-object, and the response contains only the data 

specifically asked for by the client.

Objects communicate what they have and what they can offer; what they pointedly 

do not communicate are any details of how they work. For this reason they are 

known as "abstract data types."

Using abstract data type descriptions, we do not care (we refuse to care) 
about what a data structure is; what matters is what it has -  what it can 
offer to other software elements. ...[T]o preserve each module's integrity 
in an environment of constant change, every system component must 
mind its own business. (Meyer 1988, p. 54)
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Restricting the amount of information that passes across an interface is an aspect of 

information hiding, an important element of modular programming, which we take 

up in more detail below.

4 A  Explicit interfaces

"Whenever two modules A and B communicate, this must be obvious 
from the text of A or B or both."

The reason for this principle is clear: for people to work with modules effectively, it 

must be clear what they do, and where interdependencies lie. Few problems so 

hinder smooth evolution of a system as hidden interactions which cause 

unexpected effects. Ideally, the communication between modules should be 

obvious from the text of both.

4JL Information hiding

"All information about a module should be private to the module unless 
it is specifically declared public."

Information hiding dramatically reduces the complexity that programmers face and 

the cognitive demands on them. In a manner suggested by our discussion of small 

interfaces above, it allows programmers to ignore the contents and functioning of 

modules they call on. The programmer is thereby freed to think simply about what 

services those modules provide. While information hiding tends to decrease the 

likelihood that a programmer might improperly try to change another module,

[7]he purpose of information hiding is abstraction, not protection. We 
do not necessarily wish to prevent client programmers from accessing 
secret class elements, but rather to relieve them from having to do so. In 
a software project, programmers are faced with too much information, 
and need abstraction facilities to concentrate on the essentials.
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Information hiding makes this possible by separating function from 
implementation, and should be viewed by client programmers as help 
rather than hindrance. (Meyer 1988, p. 204)

Separation of interface and implementation is the essence of information hiding. 

The interface -  the messages or routines through which a module interacts with 

others -  must of course be publicly known. But its implementation, the methods it 

uses to carry out its tasks and the data structures it draws on, should be private. 

Others should not need to know them. An important benefit is that when for some 

reason, a module's implementation is changed, other modules are not affected. As 

long as the object in question responds to the same message, other objects calling 

on it for services are not affected.

In object-oriented languages, one way in which information hiding is accomplished 

is through the combination of polymorphism (see Chapter 2 for a description) and 

dynamic binding. Wide varieties of related objects may be called on 

polymorphically, i.e., with the same interface, that captures some abstraction they 

share. Continuing with our example from Chapter 2, doors, windows, books, and 

mouths may all be shut. The same term shut applies polymorphically (in a variety 

of forms) to each. Of course there is a different procedure for each variety of shut, 

corresponding to the different (kinds of) objects, but that procedure may remain 

hidden from those who write the client code. The right procedure is applied to 

each through dynamic binding, the software system's ability to pick the appropriate 

procedure for each different kind of object (bind procedure to object) as the 

program actually runs. The decision is made "on the fly," and it changes with 

different kinds of objects; in this sense it is dynamic.
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The great benefit that polymorphism and dynamic binding provide programmers 

and programmer teams trying to evolve software is that the combination allows 

them to concentrate on the essential abstractions and not get lost in the detail of 

implementation. They can use their natural faculties for conceptualization and 

abstraction and apply them directly to the problem they are working on, 

comfortably removed from the nitty-gritty requirements of the computers.

An illustration of the benefit comes from the recent experience of Texas Instruments 

in building a new computer-integrated-manufacturing system for manufacture of 

semiconductors. They built the system to control fabrication machines built by 

Texas Instruments, but at a late point in the development had to extend the system 

to control fabrication machines built by a third-party supplier also. It was not 

necessary to build a separate system to control the different machines. The same 

interface was used for the third-party machines as was used for the Tl machines; all 

that was necessary was to tailor the new implementation code to the needs of the 

third-party machines.63

These principles of modular software construction are not easy to achieve. Because 

there is always a temptation to hack a quick solution, rather than maintain sound 

modularity, it requires constant thought and work to adhere to these principles, to 

keep a program evolvable as it evolves. Ward Cunningham says that in order to 

control complexity, "when you learn something about how you should have done

63 Experience report presented at OOPSLA 1992 by John McGehee of Texas 
Instruments.
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it, you have to change the program to do it the way you should have done it."64 

This is a process he calls consolidation, which he likens to paying off the principle 

of a debt.

Whenever one allows a design to become sloppy, as w ill often happen in 

experimenting with different solutions, it is as if one has borrowed money. Because 

one sloppy solution leads to problems that can be addressed with other quick fixes, 

the size of the debt can grow, with maintenance problems as the interest that must 

be paid. Eventually, and preferably sooner rather than later, the debt must be paid 

off, by cleaning up the sloppiness and restoring the modularity of the system, if the 

system is to remain evolvable. What this accomplishes is an appropriate 

embodiment of the problem knowledge currently available, in a robust, evolvable 

design. On that design new knowledge may then be readily built. Referring to his 

experience as designer of the WyCash+ portfolio management system,

Cunningham says that the consolidation process would make

the organization of the program closer to our current thinking. And once 
we did that we were free to advance to our next stage of thinking. 
instead of being tied back to thinking in terms of the old program.65

5. Accelerating evolution through software reuse

The implied context of discussion so far in this chapter has been the evolvability of 

particular software systems. We have considered what it means to be modular, and

64 Personal interview, October 1992.

65 Personal interview, October 1992.
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what design characteristics tend to yield the sort of modularity that promotes 

evolvability of software systems, taken, implicitly, one at a time. In this section we 

broaden the perspective to consider an important way in which modularity 

promotes evolvability of the capital structure more generally: we consider not just 

single systems, but sets of systems that are able to share modules. Here we take up 

the subject of software reuse, a subject given a tremendous amount of attention in 

the industry today.

Software modules, when they adhere closely to the principles we have just 

discussed, can be reused in a variety of contexts. Increasing availability of such 

reusable modules, frequently referred to as software components, should 

substantially increase the rate of development of the software capital structure, and 

improve quality also. Not only does reuse reduce development costs on any 

particular product, but also it initiates a trend of continually increasing productivity, 

an upward spiral of wealth creation, as the programmers build on past 

accomplishments of themselves and others.

In considering reuse, we must think of software maintenance in two ways. One is 

what we have considered to this point: adapting and enhancing existing software 

systems in response to changing needs. Reusable components contribute 

significantly to this process, as we shall see. The other concerns maintenance of the 

software components themselves. Components can of course be more or less 

reusable as they are easier or harder to understand, or require more or less 

adaptation in a new setting. Maintenance of components, then, is a matter of 

investing in the components' reusability, by, for example, making them clearer,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

149

simpler, better documented, more generally applicable, more modular according to 

the principles we discussed in the last section.

With the development of reusable components, we add another order of capital 

goods to the software capital structure. Software components constitute working 

capital for programmers, to be used in the construction of the software tools (or tool 

systems) they build. When they have components available, they need not build 

those inputs from scratch; rather they take advantage of the prior work of specialists 

who have built those inputs for them. Components are analogous to pre-built 

motors and gears used by a machine builder in constructing a new machine, or to 

machines themselves used by a factory designer in laying out a new factory.

5.1. Freeing programmers to create

It has long been lamented that programmers too often build from scratch, trivially 

reproducing functionality that has been developed as well, or better, many times 

before. (Hamming 1968) Software components, particularly those based on object- 

oriented technologies, in providing a greater degree of modularity in programming, 

make reuse more feasible than in the past. With code reuse, what has been 

accomplished before need not be repeated, but simply incorporated, perhaps with 

simple modification.

Hence the most obvious benefit of software reuse: the savings that come simply 

from not reproducing what has been done before. This saving of programmer hours 

would be very significant even if the story ended here. But the programmer time 

and creativity that would have been spent reproducing may instead be spent 

creating, pushing outward the frontier of the new and challenging. This more
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concentrated attention on new problems leads to an increased rate of software 

development overall, with the corresponding improvement in society's ability to 

produce new wealth.

JLZ Stockpiling expertise

Furthermore, the range and quality of the capital goods available to programmers 

steadily increase in a reuse environment. In essence, as software systems are 

developed, and from them reusable components are made generally available, the 

software capital structure grows directly. As more and more expertise is built into 

the environment the programmer uses, as more and more abstractions are built into 

reusable components ready-to-hand, the programmer may be more effective still.

To the extent that these components are shared in an organization or a market, 

programmers stand on one another's shoulders.

A number of studies suggest the power of reusable components to augment 

productivity.66 Sam Adams has reported on a series of products that Knowledge 

Systems Corp. built for Hewlett-Packard using Smalltalk, beginning with a project 

called Hierarchical Process Modeling System (HPMS). Adams reports that 

subsequent projects

benefited greatly from the components developed during the HPMS 
project. In addition, several of the components were redesigned during 
their use in other projects and were then reintegrated into HPMS. As a 
result, several of the components were refined several times across 
different projects, and became the base for an internal reuse library that 
has benefited many projects since then. (Adams 1992c, p. 3)

66 See Tirso (1991), Ryan (1991), and Harris (1991).
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Among the statistics that Knowledge Systems Corp. kept during their work for 

Hewlett-Packard was an estimate of reuse savings. Adams reports that "[t]he savings 

often exceeded the actual cost of the project, indicating that much more 

functionality was delivered for the same cost."

Note also the evolutionary cycle of ongoing development that Adams points out. 

Components designed in the initial project were then improved on being reused in 

subsequent projects. The new, improved versions were then reincorporated into 

the first system.

5.3. Generating economies of scope

Most programming today still occurs within what Meyer calls a project culture, in 

which a specified project "starts at day one with, as its input, some large user's 

specific need. It ends some months or years later with a solution to that need ..."

(1990, p. 76) When software development organizations move out of the project 

culture and begin to take advantage of software reuse, they can achieve significant 

economies of scope. (Teece 1980; Lavoie, Baetjer, and Tulloh 1991b) Component 

availability simplifies producing related functionality, typically related programs 

within the same problem domain. Reusable frameworks at a high level of 

abstraction are especially powerful, for these frameworks can form the basis of a 

family of related applications.

One kind of high-level reusable framework is an enterprise model. Sam Adams 

describes enterprise modeling as "the process of developing a software model that 

encompasses the nature of the business enterprise itself, its behavior, environment, 

and rules." With enterprise models,
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a common reusable framework is designed for an entire class of 
applications. The functioning enterprise model becomes the reusable 
backbone for various applications across the enterprise, greatly reducing 
the complexity and redundancy that is so common in today’s legacy 
systems. (1992c, p. 4)

High-level frameworks of this kind can potentially yield tremendous gains. (Of 

course the gains come at a cost. Finding the appropriate abstractions is challenging. 

As Sam Adams says, ” [t]his level of reuse ... does not come cheap.") High-level 

frameworks bring forward the starting point at which programmers begin new 

projects, and facilitate communication and coordination among both the producers 

and the users of related software products. As frameworks become more 

widespread and generally used, the economies increase. At present, this kind of 

reuse is at best found within a few firms. But as component markets develop, we 

may find these kinds of economies stretching across whole industries.

5.4. Reducing what programmers need to know

A consequence of widespread reuse w ill be programmer specialization and division 

of knowledge; as available components embody an increasing variety of design and 

domain knowledge in convenient, ready-to-hand fashion, the software industry will 

see ever more of the sharing of expertise across time and space that we saw in 

Chapter 1 to be a hallmark of economic development. Programmers will need to 

know relatively little about the components they use. In particular, they should 

need little knowledge of the implementation of established components. Their 

knowledge and expertise would instead concern the components' behavior -  how 

to use them for various purposes.
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For programmers, the availability of a host of excellent components embodying a 

great variety of functionality means not only that they do not have to rebuild the 

functionality themselves, but that they do not even need to be able to do so. They 

need not even think about how those components work, but only what they do. 

They are thereby freed to contribute their own special talents, insights, and 

capabilities to the growing body of programming knowledge. Through software 

capital markets -  component markets, whose anticipated advent we take up in the 

next chapter -  they are able to take advantage of, and contribute to, an extended 

and extending order of social cooperation (Hayek 1988) among programmers.

5.5. Improving code dependability

Component use tends to decrease debugging time, as components become more 

dependable and error-free. As components are repeatedly put to the test in a variety 

of uses, their capabilities become known, and less debugging time is required. A 

programmer using code from a well-managed corporate library of reusable 

components should be able to do so with great confidence, knowing that only 

proven components are admitted into the library for general use.

The very techniques that make for good modularity also enhances trustworthiness. 

As we have seen, one of the principles of good object-oriented programming is to 

keep the individual elements simple, and easy to comprehend all at once. Another 

is to use small interfaces. The encapsulation provided by object-oriented languages 

also contributes to dependability. While encapsulation does not guarantee the 

dependability of the encapsulated component, of course, it does improve the 

likelihood that any problems that arise will be localized and easy to find. These
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principles, while fostering reusability, contribute to code trustworthiness at the same 

time.

Present software reuse yields significant benefit to firms that take advantage of it. 

Component technology in a market setting should yield still greater benefits. While 

components are increasingly shared and reused within firms, there is still little reuse 

across firm boundaries. To economists sensitive to the powers of markets to 

discover and communicate knowledge, the prospect of component markets is 

exciting. Reuse within a market setting will yield enormous productivity gains, by 

disseminating widely the most effective technology. This prospect is the subject of 

the next chapter.
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Chapter 5

Evolving the Capital Structure: 

Markets for Software Components

Saw the heavens fill with commerce, argosies o f magic sails,
Pilots o f the purple twilight, dropping down with costly bales;

- Tennyson, "Locksley Hall"

Economics has from its origins been concerned with how an 
extended order o f human interaction comes into existence through 
a process o f variation, winnowing and sifting far surpassing our 
vision or our capacity to design.... Modern economics explains 
how such an extended order can come into being, and how  it itself 
constitutes an information-gathering process, able to call up, and  
to put to use, widely dispersed information that no central 
planning agency, let alone any individual, could know as a whole, 
possess, or control.

- F. A. Hayek67

1. Introduction

In this chapter we take a different perspective on the nature of capital structure 

development. We move beyond what we may call social learning in the small -  

the learning necessary to develop and evolve particular capital goods -  to consider 

what we may call social learning in the large -  the development of new institutions, 

understandings, and practices that support the capital structure and allow it to grow

67 (1988, p. 14).
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more rapidly. In particular, we look at the prospect of markets for software 

components. (Cox 1990 and 1992; Lavoie, Baetjerand Tulloh, 1991b and 1992)

Many believe that increasing software reuse within particular firms will boost 

significantly the productivity of those firms, in time to market, quality, 

maintainability, and range of products offered. Even if these hopes come to be fully 

realized, those productivity gains may be only the embryo of the benefits possible 

for software reuse. Far greater gains w ill result when and if reuse is extended across 

firms through component markets. Improvements in modularity, and especially 

object-oriented technologies -  go a long way to make possible vigorous markets for 

software components. Interestingly, while object technologies clearly make 

component markets possible, this seems to be an unintended consequence; most of 

the designers and developers of object technologies have had other things in mind.

Extensive software component markets, on the verge of which we seem to stand 

today, should enhance social learning and therefore wealth creation in a number of 

ways: Markets w ill make possible a dissemination of the knowledge embodied in 

software components far beyond what is possible in the absence of markets. Also, 

markets should support a more rapid development of new knowledge of this kind, 

through extending the number and diversity of people involved in the learning 

dialogue, and through extending the dialogue deeper into the structure of 

production.

In order for software component markets to flourish, however, more social learning, 

in the form of development of supporting institutions and attitudes, is necessary.

The most significant needed change, which we take up in detail in section 4 below, 

appears to be improved means of pricing components, based on new property rights
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institutions. The very characteristic of software which makes it so suitable for this 

study -  its being primarily knowledge, largely independent of physical embodiment 

-  has made software problematical for those who produce it. Software can be 

copied at almost no cost, into other machines, onto diskettes, over networks. For 

smaller units of software such as small-scale software components, this presents a 

real problem: it is very difficult for the producers of such components to be paid 

adequately for the benefits they offer; it is too easy to get a copy of a component 

without paying for it. Accordingly new means of establishing and securing 

property rights in software need to be developed.

Also standards must be evolved to improve complementarity of different 

components. New means of distributing software will have to be developed and 

accepted. All these changes will require cultural shifts. And of course, all these 

changes will impact one another: components, component markets, and the 

institutions that support them will co-evolve.

The development of component markets, then, w ill be a matter of social learning in 

the large, not constrained to the limited settings we have considered thus far, of 

certain clients, designers and single software applications into which their 

knowledge is built. Our context in this chapter is the software industry as a whole, 

(overlapped as it is with many other industries, of course). As software systems 

embody and re-present in useful form a large amount of knowledge from many 

people, far exceeding what one person could know, so likewise the systems of 

interaction we know as markets embody and present to us in useful form a great 

and various (and evolving) body of knowledge. As the development of software is a 

social learning process, so also is the development of software component markets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

158

2. Component markets as an unintended consequence of improved 

modularity

"For want of a nail, the shoe is lost; for want of a shoe, the horse is lost; for want of 

a horse, the rider is lost," writes George Herbert.68 Small developments can have 

great consequences. This seems to be the case, though in a happily positive 

direction, with object technology. Object-oriented programming languages were 

developed initially to facilitate computer simulation and to empower computer 

users to accomplish their various purposes better. (Goldberg 1981) As we have 

seen, over time object-oriented technologies have been recognized as useful in 

enabling rapid product development, reducing maintenance problems, and 

facilitating code reuse. Aside from a few far-sighted individuals however, few have 

seen clearly that improved modularity through objects has still another benefit to 

offer: the potential to revolutionize software development, by enabling thorough

going specialization and division of knowledge, mediated by markets. (Lavoie, 

Baetjer, and Tulloh 1992) The attention now being paid to reuse, and to 

constructing well-defined software assets suitable for reuse within a firm (Adams 

1992a) inevitably leads in the direction of component markets, because the more 

understandable and complete is some software component, the more likely it is to 

be desirable to users outside the firm in which it is developed.

Component markets were possible before the development of object-oriented 

technologies only to a very limited extent, because previous technologies involve

68 lacula Prudentum. 499.
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too many interdependencies: previous "components" have rarely been truly 

separable and independent. Previous technologies do not facilitate what Meyer 

calls modular composability and modular understandability. With the 

encapsulation of data and functions that objects provide, however, it is possible to 

build "computers within computers," units of functionality that make sense on their 

own, and can be incorporated into a variety of different systems. With this 

capability, it is now possible to produce meaningful units of functionality that can 

be combined in a variety of ways. These meaningful units of functionality are 

sellable units, providing, of course that the problem of property rights and pricing is 

solved. Hence distinct software modules make possible markets through which 

they may be widely disseminated, and thereby free programmers from the need to 

redevelop such functionality on their own.

When and if software component markets develop, they w ill constitute a significant 

further enrichment of the complex pattern of complementary relationships that is 

the capital structure. Complementarity continues to be of the essence: the new, 

finer-grained elements of the software capital structure must work with one another 

to be valuable (and hence to be capital). In the market context, however, 

complementarity w ill be mediated more by market forces than by direct planning, 

as it is within a firm or project. Whereas within a given project, one might ask, 

"what does the interface of this object need to be, so as to fit with the objects my 

colleagues are building?", in the market context one needs to ask, "what does the 

interface to this component need to be, so as to fit with the conventions and 

standards that are evolving in the marketplace?"
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In the present context, then, we are looking beyond the learning necessary to build 

a software system successfully, at the learning necessary to develop the social 

system -  the market, what Hayek called the extended order of human cooperation -  

so as to achieve a general increase in wealth.

3. Learning through markets

Extensive component markets w ill yield important benefits that w ill transform 

programming practice for the better. The transformation w ill be profound.

Consider the current state of division of knowledge in the software industry: almost 

everything except the development tools is built internally. In many cases, 

programmers literally begin with a blank screen. This is equivalent to a building 

contractor's being asked to build a new house, and beginning by going out to the 

forest with a chain saw to cut lumber for two-by-fours and roofing shingles, and 

digging in the ground to mine iron from which to cast the bathroom fixtures. The 

contractor may use tools bought from elsewhere, but he produces all his materials 

himself. This picture seems to us absurd and wasteful. But there was a time not 

long ago when homesteaders did exactly this. Only the development of widespread 

markets for housing components has made possible our present division of 

knowledge and labor with their multiple stages of production, and the efficiencies 

and higher quality that result.

Of course, with intra-firm reuse, the picture improves. It roughly parallels a 

situation in which the building contractor has certain grades of lumber and wrought
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iron on hand from previous jobs, which can be incorporated into new buildings 

with little or no adaptation.69 This is a great advantage. Nevertheless, it falls far 

short of what that can be achieved through extensive specialization and division of 

knowledge made possible by market relationships, in which two-by-fours, roofing 

shingles, bathroom fixtures and the rest of the materials are built by specialists, with 

the house builder specializing in assembling the parts to specification.

Software component markets offer this kind of extensive specialization. They 

promise a number of benefits in generating and making good use of the knowledge 

that exists in the software development community, but which is in large part 

trapped within particular firms. More important, they promise to elicit a vast 

amount of additional, latent knowledge that will be forthcoming when there are 

market structures to support its discovery and exploitation. Almost undoubtedly, 

again providing that the pricing and property rights issues can be resolved, there 

w ill come a time when the structure of production of software is just as specialized 

as that of house-building, and we will look back on present practice as just as 

primitive as the house-building practices of the old frontier.

3.1. Knowledge dissemination

One of the most obvious benefits of component markets is that they will allow a far 

greater number of software builders to take advantage of any particular body of

69 Of course the analogy is not perfect. Software products are not perishable, so 
once you have built a software two-by-four, you always have that item available. 
The challenges to software reuse have to do with such matters as locating, 
understanding, adapting, and testing the component, all with enough ease that it is 
simpler to reuse than to rebuild.
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embodied knowledge that may be offered for sale. Market incentives w ill 

encourage component vendors to find those development organizations that need 

the components they can provide. Instead of being stuck within the confines of a 

single firm, reuse can spread across firms. What has once been accomplished well 

need not be replicated, not within the firm that accomplished it, nor any other firm.

Of course there w ill be trade secrets, and often firms will choose not to release the 

components they have developed for sale to the general public. But as long as any 

given kind of functionality is generally needed, there will be an incentive for some 

independent component supplier to try to produce and market it.

3.2. Specialization

In considering the benefits of internal reuse in the last chapter, we mentioned that 

reuse should reduce what programmers need to know, and, in freeing them from 

reproducing functionality, allow them to devote their attention to developing new 

functionality. In short, component markets w ill allow programmers to specialize 

more. Some may specialize on building components, some on assembling 

applications with those component.

This division of knowledge and labor itself improves learning, because specialists 

are able to develop a more thorough understanding of and expertise in their chosen 

problem areas. One of the great challenges of writing good object-oriented 

software is drawing the best possible abstraction boundaries between the different 

elements of the system being modeled. It can take a long time to develop enough 

familiarity with a particular problem area to discover how these abstraction 

boundaries had best be drawn. Specialization will allow this kind of learning and
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discovery. Under present conditions in industry, with software being applied to 

ever more particular and specialized functions, this kind of specialization would 

seem to be a great benefit, because much of what the programmer needs to 

concentrate on is not programming skills as such, but the detailed and changing 

needs of the field for which he is writing software.

One kind of knowledge we would expect component specialists to build into the 

components they market is the knowledge of what kinds of customization will be 

needed for their components, and how to make that customizing easy for the down

stream programmers who w ill incorporate the components in specialized 

applications.

3.3. Information hiding through separating the stages of production

In discussing modularity above, we spoke of one of the benefits provided by 

information hiding: it prevents programmers from concerning themselves with how 

an object is implemented, and thereby from introducing any problematic 

dependencies based on that implementation. They know only what the interface is, 

and what services that object provides. With the evolution of increasingly distinct 

components built to be used in different stages of production, we have something 

similar to information hiding, and potentially more powerful in improving the 

quality of software development.
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George Bosworth, the chief technical officer of Digitalk Corp., points out that at 

present, virtually all programming is done with the same set of tools.70 

Programmers do the same kinds of things with the same kinds of tools whether they 

are writing a small algorithm or a large application: they read and write code. In 

most cases, almost all the code is directly available to them. This, Bosworth 

suggests, is a problem. Reuse w ill happen when the techniques used to reuse the 

components differ from those used to build them. He holds that for programmers to 

be able to see the code of the components they are using is problematic. It draws 

attention to how they were built, and away from how may they be used. 

(Additionally, it makes possible the perilous business of revising and "improving" 

those components, whether consciously or inadvertently, with all its problems of 

introducing inconsistencies and bugs, and violating the expectations of other 

members of a programming team.)

With this kind of idea in mind, Digitalk has built a product called PARTS, the Parts 

Assembly and Reuse Tool Set. PARTS offers a platform for truly distinct stages of 

software production. With PARTS, the user of a particular component does not and 

cannot see how it is built.71 Thus the user's focus is necessarily on what he or she 

w ill use it for. Irrelevant detail is suppressed. The user assembles applications 

using the PARTS Workbench, by linking various components together visually on

70 Personal interview, November 1991. I am indebted to Mr. Bosworth for my 
appreciation of this point, and my understanding of its importance.

71 This is known as a black box component. While there have been black box 
components available in other settings before, including reuse programs in large 
firms (Tirso 1991, Harris 1991, Prieto-Diaz 1991), Digitalk's PARTS is the most 
important commercial platform for black-box components to date.
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the screen, occasionally dealing with a limited amount of code. Digitalk is actively 

encouraging third-party developers to build a variety of components for the system, 

offering all sorts of special functionality, which w ill then be available for sale to 

other users of the PARTS Workbench for assembly into applications.

The development of PARTS and other systems like it may stimulate an important 

step in the evolution of the software industry: the development of a new stage of 

production. This stage is suggested by a minor confusion in the terminology being 

used to discuss PARTS. Up until now, one has been able to communicate fairly 

clearly speaking only of programmers and of users. Programmers were those who 

build software. Users were "end users" -  the people who make use of the software 

applications. The limited terminology suggests what is largely true -  software 

applications are built at a single, very complicated stage of production. Or rather, 

given that the work of translating the finished code into machine language is done 

by compilers at a separate stage in the process, we may say that applications are 

built in two stages.72

But in a recent article discussing PARTS (Bosworth 1992), when George Bosworth 

speaks of users he does not mean end users. He means those who w ill (re)use 

PARTS components in assembling applications. This is programming, although of a 

different sort than what we are accustomed to, since programming with PARTS 

mostly involves visual tools rather than coding, and since one who programs with 

PARTS is equipped with a new and rich sort of working capital, ready at hand.

72 Of course the compilers in many languages operate automatically, without 
human intervention; that is, at the compiling stage human programmers are present 
only in the form of their knowledge, embodied in the compilers.
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Hence in this context we have three kinds of programmers: those who build 

compilers and programming languages, those who build components, and those 

who use components to build applications. We might expect that as the trend to 

component markets and component assembly systems such as PARTS continues, 

new terms w ill evolve to capture the distinction.

O f course this division of software production into stages of production can 

potentially go on a long way, with small components being built into larger 

components, and these into still larger components, in an indefinitely long 

progression. Indeed, the PARTS Workbench provides the capacity to build new, 

larger units out of a combination of smaller PARTS (Digitalk calls them nestparts or 

subassemblies), and treat these new entities as separate, independent PARTS. 

Presumably, we can expect this division of labor and knowledge to be limited, in 

the end, only by the extent of the market, and the market w ill be very large indeed.

It may be that we are seeing the beginning of another transformation of what it 

means to program, similar to the shift that occurred when higher-level languages 

were built which could automatically do the low-level "programming" into machine 

language. Perhaps, with the embodiment of a wide variety of programming 

knowledge in a broad selection of readily available and easily combinable software 

components, virtually everyone may become a programmer. There was a time 

when telecommunication was demanding -  only trained telegraph operators could 

effectively communicate with one another across long distances, because the 

available tools required special knowledge to operate, and communication had to 

be in Morse code. But in time better, handier capital goods for telecommunications 

were devised. In particular, the telephone was invented. Now everyone may be a
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telecommunicator, simply by speaking into a telephone, whose use is natural, easy, 

and almost self-evident. There seems to be no reason why "programming" should 

not become as easy, as we learn how to build the requisite knowledge into better, 

handier programming tools. As telephones let us move from telecommunicating in 

Morse code to telecommunicating in natural language, new programming tools may 

let us move from programming in code to "programming" in natural language.

3.4. Market learning

A crucial benefit that component markets w ill give software is more extensive and 

detailed market learning. As Hayek has pointed out, the market process is a 

discovery procedure (1978) through which market participants may learn what is 

needed and wanted, what is available, and where opportunities lie. Of course all 

we have discussed to this point assumes a market context. The point is not that 

component markets w ill add something different, but that they w ill extend market 

processes more deeply into the software development process, and thereby deepen 

and enrich the learning that can occur.

Obviously market feedback drives software development. The public's desire for 

certain features in word processing or spreadsheet packages -  whether registered 

through direct praise, complaints, published reviews, or simply changes in market 

share -  directs the subsequent development of the applications. The same kind of 

thing is true even with large applications built in-house for large firms. The users of 

the application are in effect the customers of that firm's programming team that 

builds and maintains the application, and the users' satisfaction or dissatisfaction 

with performance and features will shape what the programmers do next. This 

iterative, back and forth sequence of the software maker's offering a new release of
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the product, and the public's responding to it with market feedback, is another 

instance of the dialogue-like process we saw occurring with prototyping. It is an 

important source of knowledge about what is needed and wanted: the knowledge 

gained can then be embodied into the next release of capital goods in question.

An especially salutary aspect of this process is the knowledge generated by the 

multiple experimentation that occurs with competition. In a competitive 

environment, different providers try different solutions to a problem, essentially 

offering them for approval to their customers. The better solutions tend to become 

known and widespread. Furthermore, the very variety of attempts is suggestive of 

what else may be done: sometimes failed attempts give the observers ideas as to 

how some aspect of that attempt might be successfully used. With competition also 

comes an added dimension to the dialogue between providers and customers; that 

is what A.O. Hirschman calls exit, the option that customers have of simply leaving 

the dialogue -  taking their business elsewhere. Of course taking this option sends a 

strong signal to the providers that they are somehow falling short.

Component markets w ill make all these kinds of feedback finer-grained and more 

extensive for the software industry, thereby generating more knowledge in the 

system. Not only whole applications w ill be judged and commented on, whether 

directly or through exit; but now the component building blocks will be subject to 

the same kind of dialogue and discovery. The effect should be to improve the rate 

of improvement in the software capital structure at all levels.
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4. Aspects of component market evolution

While the promise of component markets is great, and while object technologies 

make possible the building of reusable software components that may be bought 

and sold, some substantial changes must occur in the software industry and the 

software development culture before component markets can flourish. (Lavoie, 

Baetjer, and Tulloh 1992) These developments constitute social learning in the 

large: the evolution of a body of shared assumptions and practices.

4.1. Development of standards

One of the main obstacles to software component markets is the lack of standards. 

Even though the different object-oriented programming systems all allow the 

construction of reusable and potentially sellable components, in most cases these 

components cannot be integrated without an effort far exceeding what it would take 

simply to replicate their functionality. A main problem is the incompatibility of 

objects built in different languages. Objects built in Smalltalk cannot be 

incorporated into a C + + program. Worse yet, there are incompatibilities among 

the different class libraries developed for the same language (class libraries are sets 

of objects, usually sold as a package, offering a variety of functionality). While 

there is a variety of class libraries to choose from if one uses, say, C + +, one pretty 

much has to choose, because the libraries w ill not work together. For example, the 

same class name might be used in two different libraries for two entirely different 

classes.
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Lack of standardization fragments the potential market excessively, thereby 

reducing the incentive to develop components for sale.

There are, however, promising developments on this front. IBM is developing what 

it calls a System Object Model (SOM), which is intended to allow objects written in 

different languages to work together. Not only that, it allows classes of objects from 

different languages to be adapted (the technical term is "subclassed") by the users as 

needed, without any knowledge of the original language required. Hence the 

System Object Model provides a bridge between languages.

Another development comes from the Object Management Group, a consortium set 

up to establish standards for sharing components across networks. The Object 

Management Group has already established the Common Object Request Broker 

(CORBA), a standard for object interaction that is gaining widespread acceptance 

among some of the largest software vendors.

Digitalk intends for PARTS, which is built in Smalltalk, to provide the capacity to 

"wrap" objects built in other languages. This w ill allow component developers 

using other languages to build PARTS components. Also it will allow companies 

with a large investment already sunk into components built in other languages to 

transform them into PARTS components, which can then interact freely with other 

PARTS components.

For any of these different systems to become established as a standard around 

which component markets grow, an adequate number of industry participants must 

embrace it, learning its virtues and defects, and how it can accommodate their 

needs. Importantly, this is a coevolutionary matter: among the most important
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things any market participant must learn about an emerging standard is that it seems 

to be accepted by others. The network externality here is substantial.

One would hope that a number of different standards emerge. Different kinds of 

standards w ill be appropriate for different purposes. Further, the competition 

among standards is itself a valuable social learning process. Much can be learned 

through comparing the advantages and disadvantages of competing standards for 

different purposes.

4.2. Pricing

As we have suggested, even if there presently existed a number of generally 

accepted standards for component interaction, markets for components might not 

flourish, because current methods of pricing software are probably inadequate to 

the special demands of component markets. With today's pricing institutions, it 

might be very difficult for component producers to be paid adequately for what they 

produce. Software is easy to copy; indeed, the cost of copying a program 

approaches zero. Under today's pricing institutions, this fact is a problem 

obstructing component markets: a component producer might conceivably build a 

valuable component, sell a few copies, and then receive no more revenue, even 

though her component is widely copied and widely used. New methods of pricing, 

based on new conceptions of property rights to software, w ill need to evolve.

Under appropriate pricing institutions, the ease of copying might be turned to a 

benefit for component producers, and accelerate the development of component 

markets. Property rights structures continually evolve (Mackaay 1990), and they 

undergo significant transformation in response to changes in technology (Palmer
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1989). As technologies develop, the societies using them must learn what kinds of 

property rights structures work well.

Vendors of software need assurance that they will be rewarded for the value they 

provide others; they need protection of their property rights. At present, this 

protection is afforded, imperfectly, by licensing and copyright. Nearly all software 

is licensed, not sold. For mass market software, the courts have evolved a system of 

shrink-wrap licensing through which, when a buyer breaks the shrink-wrapped seal 

of a software package, he is thereby agreeing to the terms of the license. A variety 

of licensing arrangements is being developed for use on networks: In some cases 

different prices are charged for different numbers of users; in others the network is 

equipped with a metering system that allows only a limited number of uses of an 

application at a time, in the manner of a lending library with only a limited number 

of copies of a book for check-out. Furthermore, software may be copyrighted: one 

may not legally make more than a very few copies (e.g. for purposes of backup) 

under the fair use doctrine.

O f course, these legal restraints do not work perfectly. The almost effortless ease 

with which software may be copied -  a marvelous characteristic from the 

standpoint of what it means for the spread of knowledge capital -  is, in the context 

of present legal and market institutions, a severe liability. Because software is 

presently sold by the copy, ease of copying is a problem. "Piracy" -  illegal copying 

of software -  means lost revenues to software producers, and hence a reduced 

incentive to produce it. The problem is worse with software components: because 

they are smaller and less expensive, it is more difficult to detect the copying of 

them, and it is uneconomical or impractical to secure revenues by such strategies as
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bundling them with documentation or the promise of upgrades. There is also the 

problem that incorporation of too many third-party components into an application 

can push its price too high: Each component vendor, fearing copying, may be 

induced to charge a fairly high per-copy royalty on his component. The application 

vendor must of course cover these costs in the price of his application. It is easy to 

see that incorporation of too many high-priced components can price the 

application out of the market altogether. Hence application vendors have the 

incentive to rebuild functionality rather than buy it.

Some have suggested, persuasively, that adding a new, substantially different kind 

of pricing option can greatly facilitate the emergence of component markets. (Miller 

and Drexler 1988b, Cox 1992) This approach is to allow users to pay for software 

by the use rather than by the copy. It is known as charge-per-use, pay-per-use, or 

superdistribution. (Mori and Kawahara 1990) Under a charge-per-use system, a 

meter of some kind in the underlying operating system would keep track of how 

much certain software and software components are used,73 and the user would be 

charged accordingly. Some means (there are a number of alternatives) would have 

to be settled on for ensuring payment, which would probably be handled on a 

monthly or quarterly basis through a clearinghouse, which would distribute 

payments to the different vendors. (The statement could detail usage for the 

customer in the manner of a telephone bill.)

73 How usage might be defined is an interesting question. Some vendors might 
charge by time of use, some by number of uses, etc. The different methods can 
coexist. Presumably market experimentation will reveal which techniques are best 
attuned to which circumstances.
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Charging by use rather than by the copy allows vendors of software and software 

components to segment their markets on the basis of their customers' intensity of 

use. Occasional use of a very expensive program would become feasible under 

charge-per-use, and vendors would have a better chance to be paid by intense users 

in accordance with the value they actually receive from certain applications.

By providing a technological means of ensuring payment, charge-per-use eliminates 

many of the current problems of enforcing contracts by monitoring and by legal 

procedures. Indeed, in a charge-per-use system users would be encouraged to copy 

their software freely and distribute it widely, to friends, co-workers, and others.

From the standpoint of component markets, charge-per-use has the great advantage 

of giving component producers reasonable assurance of payment. Freed from the 

worry that components they build w ill be illegally copied and widely used, with 

little reward to themselves, potential producers of components are likely to become 

actual producers of components. For the same reason, component producers would 

feel free to charge, for use of their components, only a small fraction of what it cost 

them to build those components; they would reasonably expect to be paid for their 

effort incrementally over many uses. This low per-use price of the components 

would in turn mean that prospective users of those components would be willing to 

incorporate a number of third-party components into their own applications, 

because doing so would not drive up the per-use cost of their applications too 

much.

There is an important social learning advantage to charge-per-use. That is, the 

underlying system would be able to collect extensive valuable information about 

the nature of usage. Figuratively speaking, it would allow the market dialogue
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among vendors and users to be more rich and detailed, so that they may come to 

understand one another better. This finer-grained market feedback would inform 

subsequent software development, resulting in lower costs to producers, and better 

quality to users. At present, application providers do not have much information 

from their users as to what aspects of those applications are used the most, or most 

valued. But with a charge-per-use system, application and component developers 

could gather detailed information of this kind. They would then have a better idea 

which modules to enhance first, which modules to deemphasize, which to improve 

in performance, etc. Significantly, because different users use applications in 

different ways, detailed usage information would make it possible for vendors to 

customize particular versions to the needs of different customers (somewhat in the 

manner that telephone companies today offer different packages to users with 

different intensities of use). It would not even be necessary for particular users to 

know which version of a software application they are using; the vendor could 

simply monitor their use, and customize their packages accordingly.

Privacy issues arise with this technology. Some may not want anyone to know how 

much they use different (parts of) software applications. Encryption technology 

exists, however, for allowing precise data to be collected, charges made and royalty 

payments paid, without anyone being able to tell who used what. Accordingly, 

those who wanted privacy could have it. On the other hand, many w ill probably 

want the advantages that come from their software suppliers having good 

information about their usage.
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4.3. Distribution channels

Software component markets w ill require new distribution channels. Current 

software distribution channels, generally expensive and aimed at the mass, end-user 

market, are ill-suited to components, which require inexpensive channels aimed at 

developers and sophisticated end-users. A small-scale software component, for 

example, that may sell for, say, $80 to each of a thousand potential users 

nationwide, cannot afford $100,000 worth of packaging, marketing, and distribution 

costs. The industry needs to develop affordable means by which producers can 

easily distribute their components, and users can easily access them.

Fortunately, complementary technologies are being developed. In particular, 

electronic distribution seems very promising, especially if charge-per-use is enabled. 

Components may be easily loaded onto telecommunications networks, and 

downloaded by potential users at very low cost. On-line cataloguing of 

components can lower the costs of communicating what components are available 

and what they do. Additionally, electronic marketplaces can reduce the transaction 

costs of buying and selling components through electronic payment and 

maintenance of accounts.

In January of 1992, an electronic marketplace providing the above services came 

into being. The American Information Exchange (AMiX) opened an electronic 

market for software components and consulting.

Components can be inexpensively stored on the system and downloaded 
by buyers for immediate use. To facilitate custom development the 
system supports small-scale consulting with negotiation, contracting, and 
delivery on-line. AMiX handles all billing and accounting centrally, 
freeing market participants from accounting overhead. On-line charges
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are at cost, and in any case the system allows users to do most of what 
they need to do from their local image of the system, connecting only for 
short periods. (Baetjer and Tulloh 1992)

An alternative means of low-cost component distribution is CD-ROM (compact 

discs containing read-only memory). This technology allows very inexpensive 

distribution of vast quantities of information.

4.4. Cultural shifts

All of the technology necessary to support charge-per-use software markets exists. 

The advantages of such markets are arguably great. Why, then, do we not have 

charge-per-use markets. One important reason is that while such markets are 

familiar to our culture -  we buy telephone service, electricity, some television, 

water, etc., by the use -  there is resistance to charge-per-use in some parts of the 

programmers' subculture. Cultural shifts in general are an important aspect of 

market evolution. A shift in culture constitutes a significant amount of learning 

about shared expectations.

Regarding charging per the use of software, rather than per the copy, there is the 

particular difficulty that it reminds some programmers of the "bad old days" of time 

sharing, when they were charged for scarce, precious computer time. Those who 

believe charge-per-use software to be a return to time-sharing need to be reassured 

that this is not the case. Charging per use need only be an additional pricing 

option, fully compatible with pricing per copy, which will not disappear. Those 

who advocate charge-per-use must propagate their ideas widely, explaining how it 

can work and what its advantages are.
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An important cultural shift that would seem to contribute well to the prospects for 

software component markets is a change in the style of teaching in software 

engineering schools. Commonly, students are taught to approach problems from 

scratch, devising their own solutions to problems that have been solved by hosts of 

other students and practitioners before. While this sort of practice has its place, 

students of software engineering also need to be taught the benefits of software 

reuse, encouraged to make use of industry-standard components, and trained to 

make use of the prior work of others. In this respect, the software engineering 

schools would do well to start their students with object-oriented programming as 

the current best style of programming, instead of teaching introductory courses with 

traditional languages and then introducing object-oriented programming as 

something new and out of the mainstream. Once one has learned traditional 

approaches to programming, it is more difficult to change one's mindset to the 

object-oriented way of thinking. There is no point to teaching students bad habits, 

and then asking them to unlearn them. As industry moves more and more to object 

technologies, we can expect this shift to occur.

Whether in the schools of software engineering or in practice in industry, 

programmers need to overcome their disposition to build for themselves rather than 

incorporate the work of others. In like manner, they need to build their own code 

with a conscious eye to that code's reuse by others, making it clear, understandable, 

modular, and well-documented.

One of the most important cultural changes needed is a matter of management and 

business practice. That is, the single-project mindset must be rejected. Software 

developers must view what they do as producing not a succession of isolated,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

179

independent projects, but a family of related projects with a great deal of common 

functionality. This w ill necessitate a change in accounting: the costs of developing 

reusable assets must be spread over many projects; the practice of budgeting each 

project in isolation from others must be given up. Along the same lines, software 

development contracts must not be written as they often are today, with payments 

for development milestones that take no account of reuse. Managers today, with 

such specific milestones to meet, are understandably unwilling to permit the 

development of reusable objects, if doing so puts them over budget on the project 

for which they are responsible. High-level management must recognize that 

developing reusable software assets is an investment in future productivity that 

deserves their support.

5. Summary

The possibility of widespread markets for software components is a consequence, 

mostly unintended, of the improved modularity of software made possible by object 

technologies. Component markets would foster a substantial enriching of the 

capital structure, with greater specialization, division of knowledge, and resultant 

embodiment of useful knowledge in working capital for programmers -  software 

components. Truly separating different stages of production of software would also 

foster specialization, and allow those who build applications by composing various 

components to focus on the problem at hand, unconcerned with how the 

components they are using were built. Component markets would extend the 

benefits of market feedback and market learning beyond whole applications to the 

components of which software is built.
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For component markets to emerge, however, a significant amount of social learning 

is necessary. Standards must be evolved to enable disparate objects to work 

together. Better distribution channels, such as electronic marketplaces, need to be 

developed and used. New property rights structures and pricing methods must be 

developed to take into account components' small size, ease of copying, and 

potential composition in large numbers into final applications. Charging by the use 

rather than by the copy is a promising possibility. To support the emergence of 

component markets, a variety of cultural shifts is necessary also, on the part of 

programmers and managers. They must come to accept widespread reuse, with its 

implications for sharing one another's work and developing with a series of projects 

in mind.

Once component markets have evolved, what might the next major development 

be? (We would not expect the evolution to stop, of course.) Miller and Drexler 

(1988b) discuss a fascinating possibility. They suggest that through encapsulation, 

objects give programming the same kinds of benefits that property rights give 

economies. Why not, then, seek to incorporate more aspects of markets into 

programming systems? They suggest the further market-oriented development of 

constructing objects which bid for one another's services in, thereby giving 

programming the benefits of price information about relative scarcity. Such systems 

would probably be self-contained at first, with the different objects in a program 

negotiating with one another in terms of an internal, virtual currency. But with 

charge-per-use implemented across a network, there would appear to be no reason 

why an object on my machine should not be able, eventually, to bid for the services 

of objects (and other computational resources such as CPU time) on other 

machines. Such distributed, market-based systems of computation are what Miller
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and Drexler call "open agoric systems." Their implications, not least for very rapid 

market-based discovery, are profound indeed. (Consider: properly programmed 

objects could carry out a large number of lengthy, multi-party price negotiations in 

microseconds.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 6

Conclusions: Implications for Economic Development 
and for Growth Theory

N o t in vain the distance beacons. Forward, forward let us range,
Let the great worlds spin forever down the ringing grooves o f 

change.

Through the shadow o f the globe we sweep into the younger day;
Better fifty years o f Europe than a cycle o f Cathay.

- Tennyson, "Locksley Hall"

1. Introduction

In this brief concluding chapter we broaden the perspective greatly, and consider 

the implications of our findings to the economy as a whole. What are the 

implications of what we have discovered about software development for the 

development of the economy as a whole? And what can that tell us about 

economic theory? Before turning to these questions, we need to establish the 

applicability of the concepts we have been discussing to tools in general -  hard 

tools as well as software tools.

2. Applicability to hard tools

We chose, in this inquiry, to focus on software development, because with software 

the knowledge aspects of capital goods are so immediately apparent, and the 

physical aspects are so much in the background. This has allowed us to focus on

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

183

capital goods as embodied knowledge without being distracted by steel and glass 

and silicon and ceramics, and the important challenges of embodying design 

knowledge in those physical substances. In this section we verify that the issues of 

social learning and system evolvability, which we found to be crucial in software, 

are also fundamentally important in hard tools. The same issues apply whether we 

are talking about designing and producing a new word processor or a new hammer.

2.1. Prototyping and social learning

The key concept we explored in Chapter 3 is that the development of new capital 

goods is a social learning process. It is a learning process because it is a matter of 

embodying knowledge, and it is a social process because it calls on the knowledge 

of a variety of people, which is embodied in a form that is available for shared use. 

The knowledge is dispersed, incomplete, and often tacit. The proof of the point we 

found in the nature of the processes and tools used in initial software development. 

Chief among these are rapid prototyping and a variety of tools and methodologies 

for managing the complexity of the design process. Do we see the same kinds of 

processes and tools used in the development of hard tools?

We do. Prototyping is particularly important in manufacturing. Steven 

Wheelwright and Kim Clark address the development of physical goods in their 

recent book Revolutionizing Product Development. (1992) They argue that

...prototyping and its role in design-build-test cycles is a core element of 
development and a major area of opportunity for managements seeking 
to improve the effectiveness and efficiency of their development process.
(p. 260)
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They focus in particular on "[increasing the rate and amount of learning that occurs 

in each cycle." (p. 260, emphasis added)

New, computer-driven devices for the rapid prototyping of physical tools and parts74 

are being employed to great advantage by auto makers, aerospace companies, and 

tooling companies. (Chaudry 1992) These new prototyping tools are much faster 

and less expensive than conventional techniques, providing more rapid and 

frequent feedback to designers and prospective users.

The purpose of prototyping hard tools is the same as for software: to elicit 

information from the different people whose (often tacit) knowledge can contribute 

to the design process.

Because even simple prototypes can convey substantial amounts of 
information, they serve as a bridge between individuals and groups with 
very different backgrounds, experiences, and interests. Thus 
management can use prototypes to gauge, share, and extend 
organizational knowledge. (Wheelwright and Clark 1992, p. 274)

As with software prototypes, physical prototypes serve as the vehicle for dialogue 

through which new knowledge is elicited and understood by the various 

participants:

The physical object represented by the prototype becomes the vehicle 
by which different contributors can focus and articulate their concerns

74 These devices use such techniques as hardening liquid polymer with an 
ultraviolet laser. The laser is guided by computer-automated design (CAD) drawings 
of a series of cross-sections of the tool to be modeled. Layer after layer is deposited 
as a computer controlled lift lowers the emerging model into the liquid. Models 
can be used as the prototypes themselves, or as molds from which the actual 
prototypes are cast.
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and issues, and reach agreement on the best ways to resolve conflicts 
and solve problems. (Wheelwright and Clark 1992, p. 273)

The physical nature of the prototype makes it more understandable to those whose 

own knowledge of it is more tacit than articulate. Communication through a 

prototype often succeeds better than communication through symbolic 

representation: Through rapid prototyping, Alcoa has not only shortened its 

manufacturing review process substantially, but also has "minimized mistakes 

caused by misinterpretation of manual drawings and prints and miscommunication 

of design details." (Chaudry 1992, p. 78)

2.2. Modularity and evolvability

In Chapter 4 we explored design evolvability through modularity. Not surprisingly, 

modularity is very important in the design of hard tools also. A concept currently 

important in the engineering literature is "design for manufacturability"75 (DFM), in 

which modularity and component assembly are important. The design for 

manufacturing literature discusses specific modularity issues closely related to those 

we saw raised by Bertrand Meyer. Design for manufacturability addresses 

understandability (regarding, e.g., whether a part is symmetrical or not) and the 

nature of interfaces (ideally they should be simple enough so that parts fit or snap 

together and assembly tools are not required). Another important issue is 

standardization, for precisely the same reasons it is important in software: standard

75 For representative work, see Shina (1991) and Suh (1990). "Knowledge-based, 
object-oriented" computer-automated design systems and their use in design for 
manufacturability are discussed in Belzer and Rosenfeld (1987), and Cinquegrana 
(1990).
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parts are easier to reuse in different, but similar designs; they are more reliable 

because tested in a variety of uses; they are less expensive to use because they do 

not need to be tested; and they are more likely to be reused rather than replicated 

because they become generally known. (Kamm 1990)

While the design for manufacturability approach generally stresses the importance 

of modularity to the manufacturability of particular, single products, Wheelwright 

and Clark take pains to establish its importance to what they call producibility as 

well. What they mean by producibility is what we have been discussing as 

evolvability. They urge manufacturers to think beyond designing single products, 

and think instead of "an approach to design that comprehends the product family as 

a whole." (1992, p. 237)

Given increasingly fragmented markets and the need to offer specialized 
products that meet the requirements and demands of increasingly 
diversified customers, [manufacturers] need the capability to produce a 
high variety of products at low cost. Moreover, [they] need to be able to 
respond effectively to shifts in the product mix that occur from time to 
time in unexpected ways. (1992, p. 237)

In the terms we have been using, any design or family of designs w ill have to 

evolve as conditions change, and what changes w ill occur is uncertain. Therefore it 

is well for the designs to be evolvable. And evolvability, in hardware as well as 

software, depends on modularity of design. Wheelwright and Clark speak in 

familiar-sounding terms:

In the case of our gear design problem, a firm using modular design 
would not design a new automatic rewind system every time it brought 
out a new version of a particular camera. Instead, the project to develop 
the platform product would include an effort to develop a new rewinder 
and a new gear system that designers would use in several future 
versions of the product. Engineers working on the platform would 
design the rewinder to fit a given space constraint and would establish
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interfaces (how the parts fit together physically, how control is achieved, 
how the users interact with the rewinder) to guide future development 
efforts. (1992, p. 239, emphasis added)

The principles we have uncovered with respect to software design, then, seem to be 

applicable to hardware design. Again, we have not the opportunity to explore them 

in any depth here, but such exploration seems fruitful.

2.3. From modularity to component markets

In Chapter 5 we suggested that the improvement in software development 

technique represented by object-oriented languages enables the construction of 

reusable software components, and hence lays the groundwork for markets for 

components and thence to a new software component industry. Component 

markets w ill emerge, we argued, through a substantial amount of social learning, in 

evolution of standards, in development of new means of distribution, in changes in 

cultural attitudes and practices, and, probably most important, in the development 

of new approaches to pricing and property rights in software. We argued, further, 

that this new industrial structure, with an increasing number of distinct stages of 

production, would make possible significant social learning about what sort of 

software is needed, and by whom.

Clearly the development of modular systems has followed a similar course in a 

number of industries that produce hard tools. Richard Langlois and Paul Robertson 

have documented the evolution of modular systems in the stereo component and 

microcomputer industries. (Langlois 1990, Langlois and Robertson 1991, Robertson 

and Langlois 1992). Development of distinct modules did lead to markets for 

components; these markets depended for their vigor on establishment of standards;
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new channels of distribution evolved. And Langlois and Robertson point to clear 

benefits of this evolution:

We argue that [modular] systems offer benefits on both the demand side and the 

supply side. Supply-side benefits include the potential for autonomous innovation, 

which is driven by the division of labor and provides the opportunity for rapid trial- 

and-error learning. Demand-side benefits include the ability to find-tune the 

product to consumer needs and therefore blanket the product space more 

completely. (Langlois and Robertson 1991, p. 2)

The pricing and property rights issue appears to be fundamental in software, and an 

area of real difference from physical capital goods. Markets for capital goods, and 

the benefits they confer, depend on entrepreneurs' ability to buy and sell the capital 

goods successfully, with producers capturing in profits some of the benefits they 

provide. Software is very different from physical capital goods in being mostly 

knowledge, easily distinguishable and separable from the physical media and 

computers in which it may be loaded. The peculiar nature of software as a hybrid -  

neither pure knowledge nor hard physical good -  means that it cannot be bought 

and sold in the manner of nuts and bolts, computer chips, or automobile fenders. 

Some new pricing procedure, based on a new property rights arrangement, appears 

to be necessary for vigorous software component (capital) markets to emerge. One 

possiblity is distributing software widely at no charge ('superdistribution'), and 

charging by the use rather than by the copy.
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3. Implications for economic development: exponential growth?

What conclusions can we draw from this inquiry about the rate, and more 

importantly, the potential rates, of economic development, given appropriate 

conditions? Because economic development is in large part a matter of the 

"complexifying" of the capital structure -  the on-going enrichment of the capital 

structure as new, ever more specialized knowledge is developed, embodied in 

intersubjectively useful form and put to work in coordination with other capital -  

because this process is a learning process, and because we show signs of learning 

how to learn better,76 in the development of the capital structure there is a tendency 

to exponential growth.77

3..1,-Recursion

One factor which seems to point in the direction of exponential growth is analogous 

to what computer scientists call recursion. Recursion is a function's making use of 

itself, in a kind of a feedback, or perhaps more aptly, feed-forward process. This 

kind of feed-forward is commonplace in capital structure development. Consider

76 We even seem to be making progress in learning how to learn how to learn. See 
the work of Doug Englebart on augmentation of knowledge (1963).

77 Arguably some parts of the world are experiencing exponential growth even 
now. In the long perspective of human history, certainly the pace of change seems 
to be accelerating. If we do not see present growth as exponential, perhaps that is 
because we are still so far down on the curve that it still looks flat.
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that better steel makes possible better steel mills and better rails for transporting 

steel. With software, the recursion seems to be rapid and powerful.

There is, for example, a strong feed-forward dynamic between software and 

computer hardware. The design and manufacture of computer hardware is, of 

course, a demanding, complex matter. It is accordingly almost entirely 

computerized -  under software control. But better computer hardware makes 

possible better computer software, in a never-ending loop. Texas Instruments is 

currently finishing work on the latest generation computer integrated manufacturing 

(CIM) system. One of the decisions they made in choosing the programming 

language in which to build this system was to ignore hardware requirements -  it 

could gobble as much memory and processing power as needed; no functionality 

was to be sacrificed on that score. Despite the fact that Texas Instruments 

manufactures hardware, this sort of decision could not have been made too many 

years ago: processing power was too expensive. But hardware costs have dropped. 

Given a free hand with system size, the Texas Instruments engineers were free to 

choose the best available software development system, with which to build the 

best possible software. They chose Smalltalk and a number of related tools for the 

Smalltalk environment, and have purportedly produced therewith a really 

remarkable computer integrated manufacturing system. It is supposed to improve 

throughput by a factor of 100 over current methods. But notably, this system will 

be primarily used to produce... computer hardware. This better, cheaper hardware 

may of course be used in the future to enable still more ambitious software systems 

... and so the loop may continue.
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Another feed-forward loop we have touched on concerns the cycle from better 

software construction techniques through components to markets and back to 

software construction techniques. The general availability, through component 

markets, of a wide and increasing variety of reusable components is sure to spawn 

new kinds of software development firms and improved software development 

technique, completing the loop and probably initiating some further development 

equally significant.

3.2. General computerization

In general, the effects of computerization are very significant. The benefits of 

computation are being extended into virtually every area of human endeavor, 

making possible great precision, capture of information, widespread, inexpensive 

communication, and a host of tools and processes that were impossible before. 

Consider again, for example, the tools for rapid prototyping of machine parts. 

Software is used in producing the drawings (computer-aided design), in sending the 

drawings electronically to the prototyping device, in directing the laser that hardens 

the polymer, and in precisely lowering the platform on which the model takes 

shape, layer by layer. As the software for these purposes is improved, tool 

prototyping will improve. Similarly, better software will impact the speed and 

quality of production of virtually every hard good we use.

3.3. Learning to use software

Beyond the simple improvement of current processes through computer use is the 

development of better processes that computers and software make possible. This 

latter effect of software on capital structure development will be the more profound.
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Up to the present, in large part, we have used computers to automate old processes; 

we are just beginning to learn how to make use of the computer to do new and 

different things. Perhaps as significant, we are just beginning to learn how to adjust 

management techniques and organizational structures to complement the 

capabilities of computers.

We see this fact in the production of software itself: a great deal of work is being 

done on learning to manage the software production process better, to take 

advantage of reuse, to facilitate team programming, and to develop families of 

products rather than a stream of individual projects. In manufacturing fields 

computers provide immediate availability of information on a process, and the 

ability to generate what-if scenarios through computer simulations. These are 

powerful resources for management, such as to enable them to respond more 

quickly and intelligently to changing circumstances. Again, it w ill take us a while 

to learn how to use this information well, but when we do, we can expect still 

further advances.

Very significantly, we seem to be learning how to enable better, more rapid 

learning at a number of levels. Clearly the software development community has 

recognized the importance of building evolvable systems that can "learn" 

effectively. A similar awareness seems to be growing in management circles. 

Wheelwright and Clark urge management techniques that help producers learn 

from experience; Peter Senge has coined the term, "the learning organization."

(1990) If indeed we achieve significant social learning on the topic of how to learn 

better, in the sense of how to improve our productive processes more rapidly, we 

certainly have a strong case for exponential growth. Our tools and processes, and
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hence our productivity per person, can spiral upward without limit, outrunning the 

growth of population, at an accelerating pace.78

4. Implications for growth theory

How far the tendency to exponential economic development is checked, in 

practice, is an interesting question which we cannot pursue further here. For now, 

the important issue is: what are the determinants of rates of economic development? 

What forces tend to accelerate growth? What forces tend to impede it? These, it 

seems, are crucial issues with which the theory of economic growth should concern 

itself. We close now with a consideration of what this inquiry suggests about useful 

directions for the theory of economic growth.

4.1. Checks to growth in the new growth theory

The new growth theory of Paul Romer, as we saw in Chapter 1, takes seriously 

some of the knowledge issues we have considered. Romer's work focuses on 

"knowledge as the basic form of capital" (1986, p. 1003), considers "endogenous 

technological change" (1990a), and finds that "growth rates can be increasing over 

time." (1986, p. 1002) With all this, we are in agreement.

Where we differ with Romer is in our views on what factors slow these tendencies 

to increasing rates of growth. In the simple models used by Romer and other

78 For a persuasive presentation of a possible, indeed likely, technological basis for 
a marked upturn in the curve of economic development, see Drexler (1986).
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growth theorists, models which assume perfect knowledge and allow for no capital 

destruction, there are no obvious factors tending to slow growth. But without some 

such impeding factors, the models would have indeterminate solutions, would go to 

infinity. This result being unacceptable to these theorists, they build into the 

models a variety of ad hoc assumptions which make them tractable, and result in 

some equilibrium growth path, or at least bounds on the possible rate of growth. 

Arrow limits the model in his learning-by-doing paper, for example, by assuming, in 

Romer's terms, "that the marginal product of capital is diminishing given a fixed 

supply of labor." (Romer 1986, p. 1006) Others rely arbitrarily on upper bounds to 

the production function. (Romer 1986, p. 1007) Romer himself relies, in his 1986 

paper, on "diminishing returns in the research technology" (p. 1006), and in his 

1990 paper on the assumption that human capital "must ultimately approach an 

upper bound," given fixed population, (p. S80)

In examining software development, we have found all of these restrictions to be 

contradicted by experience. As capital is divided and improved, its marginal 

product increases;79 the production function -  the structure of production -  

improves as knowledge grows and is embodied in new capital goods.

Romer's restraints seem equally insupportable by experience. He separates the 

"research technology" by which new designs are created from production 

technology and asserts that research technology is subject to diminishing returns,

79 In this context, the idea of marginal product is metaphorical at best. The concept 
of marginal product is relevant where we have additional increments of the same 
kind of good. In this context, the essential point is that we continually have 
different goods, adapted to the new, more productive environment.
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4.2. The check to growth evident here: the challenge of social learning

The present investigation suggests that in searching for factors which lim it the rate 

of economic development, we must look elsewhere than to the kinds of limitations 

modeled in growth theory. In simple terms, we have found that what checks the 

tendency to ever more rapid economic development is that learning is challenging 

and time consuming. If there were perfect information, if learning were easy, and if 

new knowledge could be costlessly embodied in new capital goods, then growth 

rates would be infinite. But in fact the learning process on which economic 

development depends is costly in time and effort, because it is iterative and 

dialogical. Furthermore, much of our existing wealth has been designed in a non- 

modular way which makes it difficulty to evolve. The learning which occurs is 

distributed widely throughout the capital structure in various people and tools; it 

does not occur in every part of that structure at once, and it takes time for relevant 

knowledge to spread (i.e., be learned by others, or sold to other embodied in capital 

goods). Social learning is also coevolutionary: it involves complex 

complementarities that shift in time.

As a result of these characteristics, economic development is frequently capital 

destroying: new knowledge often makes old obsolete. Hence the process is not 

cumulative; new learning and new capital cannot always be added to old.

This is of profound significance in the social field. We made constant 
use of formulas, symbols, and rules whose meaning we do not 
understand and through the use of which we avail ourselves of the 
assistance of knowledge which individually we do not possess. (1945, p. 
88)
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Economic development is indeterminate and path dependent: there is no 

equilibrium toward which it tends; there are myriad possible paths along which it 

can proceed. Accordingly, the process is uncertain: it requires constant 

readjustment of plans, constant new learning, new efforts to establish or maintain a 

useful place in the structure of production.

What checks economic growth rates, what restrains economic development from 

the unrestrained advance toward which it tends, is that learning is difficult, 

uncertain, and time-consuming. At present, at least, we do not seem to be very 

good at it. There seem to be no inherent obstacles to exponential growth; it is 

simply difficult to achieve. There is no fundamental tendency to diminishing 

marginal utility of capital, for example, nor fundamental limits to the value of the 

human capital we can develop in society; it is simply that for the myriad different 

elements of an unfathomably complex structure of production to coevolve rapidly, 

while maintaining a high degree of complementarity, is difficult.

4.3. The learning tasks before us

We conclude where we began, with Carl Menger's assertion that

Increasing understanding of the causal connections between things and 
human welfare, and increasing control of the less proximate conditions 
responsible for human welfare, have led mankind, therefore, from a state 
of barbarism and the deepest misery to its present stage of civilization 
and well-being. ...Nothing is more certain than that the degree of 
economic progress of mankind will still, in future epochs, be 
commensurate with the degree of progress of human knowledge. (1981, 
p. 74)

Economic development depends on how well we learn. This suggests two sets of 

tasks, one for the practitioners of the world: the programmers, engineers, managers,
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and entrepreneurs who shape the tools and processes we use in production; and 

one for the theorists, who try to help us understand how best to shape those tools 

and processes.

For the practitioners, the task is to learn how to improve the rate of social learning. 

Methodologies and tools must be developed which improve the dialogue through 

which we learn: better prototyping tools, team learning techniques, and 

representation schemes for facilitating communication among those with different 

kinds of knowledge. Especially where our systems are very complex, tools for 

understanding need to be developed, which offer a variety of views of the complex 

reality. As much as possible these representation schemes and tools for 

understanding should allow us to work on our complex systems in terms necessary 

for thinking effectively about them.

Because it is the tool systems we use in which the learning must be embodied, we 

need to learn better how to build more evolvable systems, systems that can "learn" 

effectively in an uncertain and changing world. Because modularity evidently is 

very important to evolvability, we need to extend our understanding of the 

principles of modularity and the tradeoffs among them, so as to construct systems 

with an appropriate degree and kind of modularity.

In the field of software development we need to learn how to achieve effective 

markets for software capital -  software components -  so that we may take 

advantage of the knowledge-generation that markets provide. Most important to 

this end, we must learn how to establish property rights to software so that we can 

take advantage of, rather than be hindered by, our ability to copy software almost 

costlessly, and to distribute it at light speed.
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For theorists, the task is to understand better and explain clearly those factors which 

facilitate and those which impede the social learning process. These are the crucial 

variables that determine rates of growth. The business of growth theory should be 

to investigate energetically the factors which influence "the degree of progress of 

human knowledge," for these will determine "the degree of economic progress of 

mankind."
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